Trailing-Edge
-
PDP-10 Archives
-
decuslib20-04
-
decus/20-0101/nonlin.tr1
There are 2 other files named nonlin.tr1 in the archive. Click here to see a list.
1 NONLINEAR LEAST-SQUARES CURVE-FITTING PROGRAM
1979 VERSION OF THE NONLINWOOD 20 VARIABLE, 20 COEFFICIENT, 170 OBSERVATION PROGRAM
REFER TO FITTING EQUATIONS TO DATA BY DANIEL AND WOOD, SECOND EDITION, WILEY PUBLISHER,
FOR GLOSSARY OF TERMS, USER'S MANUAL, DETAILS OF CALCULATIONS AND INTERPRETATION OF RESULTS.
0EXAMPLE 1, LAMP HEAT
0 CONTROL CARD INFORMATION ORDER OF CARDS
COL. INPUT MAX ITEM (NOTE: BLANK ON CARD = 0) FIRST PROBLEM
1-20 IDENTIFICATION OF PROBLEM. 1 CONTROL CARD.
21 0 0 OBSERVATIONS READ FROM CARDS OR FILE. 2 FORMAT CARD (72 COLUMNS, ORDER: IDENT, Y, X(I)'S),
1 REUSE DATA FROM PREVIOUS PROBLEM. E.G. (A6, F6.0, (NOIND*F6.0) ).
23-24 2 20 NUMBER OF COEFFICIENTS TO BE ESTIMATED. 3 DELETE-OBSERVATIONS CARD(S), IF ANY.
25-26 0 FILE NUMBER IF DATA ARE TO BE READ FROM A 4 STARTING VALUES (GUESSES) OF COEFFICIENTS
SEPARATE FILE. NO END CARD(S) IF ONLY ONE (10 COLUMNS / COEFFICIENT, 7 COEFFICIENTS / CARD).
SET OF DATA IS ON EACH FILE. 5 INFORMATION CARDS FOR PRINTOUT, IF ANY.
27-28 1 20 NUMBER OF INDEPENDENT VARIABLES TO BE READ IN. 6 NAMES OF COEFFICIENTS CARD(S) FOR PRINTOUT, IF ANY.
31-32 1 NUMBER OF EQUATION TO BE USED. 7 DATA CARDS (IF NOT READ FROM A FILE).
8 END CARD (END IN COLUMNS 1 - 3 OF IDENTIFICATION
33-36 0.010 STARTING VALUE FOR LAMBDA, F4.2, (E.G. 0.1), FIELD). THE NUMBER OF END CARDS MUST EQUAL THE
USED AS A MULTIPLIER TO SCALE THE SPACE OR NUMBER OF CARDS PER OBSERVATION. (END CARDS
SIZE OF STEPS TAKEN. ARE NOT NEEDED IF DATA ARE READ FROM A FILE).
37-40 10.000 VALUE OF NU, F4.0, (E.G. 10.).
DIVISOR AND MULTIPLIER TO CHANGE SIZE OF SECOND PROBLEM
LAMBDA DEPENDING ON WHETHER SUM OF SQUARES OF IF DATA ARE REUSED FROM FIRST PROBLEM,
ITERATION IS NEAR OR FAR FROM MINIMUM. DELETE THE FORMAT, DATA AND END CARDS.
43-44 10 MAXIMUM NUMBER OF ITERATIONS, I2, (E.G. 20). IF DIFFERENT DATA,
45-48 0.010 MULTIPLIER USED TO INCREMENT VALUE OF REPEAT 1 - 8 ABOVE.
COEFFICIENTS, F4.3 (E.G. 0.01).
NOTE: IF VALUES IN COLUMNS 33-48 ARE NOT DEFINED
ON THE CONTROL CARD. THEIR LEVEL WILL BE
SET AUTOMATICALLY TO THE ABOVE E.G. VALUES.
CRITERIA FOR ENDING CONVERGING ITERATIONS.
49-56 0.0E+00 SUM OF SQUARES CRITERION, F8.7,
(E.G. 0.0001, A CHANGE OF LESS THAN 0.0001 IN
THE RESIDUAL SUM OF SQUARES).
57-64 1.0E-05 RATIO OF COEFFICIENTS CRITERION, F8.7,
(E.G. 0.001, A CHANGE OF LESS THAN 0.001 IN
THE RATIOS OF ALL COMPARABLE COEFFICIENTS).
NOTE: VALUES IN COLUMNS 49-64 CAN BE SET AT 0.0
IF CONTROL OF EITHER OR BOTH IS NOT DESIRED.
65-66 3 12 NUMBER OF INFORMATION CARDS TO BE READ FOR DISPLAY
ON PRINTOUT IF DESIRED, 72 COLUMNS EACH.
68 1 1 READ NAMES OF COEFFICIENTS FROM CARDS FOR
DISPLAY ON PRINTOUT, 1ST 6 OF 10 COLUMNS /
COEFFICIENT, 7 / CARD.
69 3 3 PLOT RESIDUALS VS. EACH INDEPENDENT VARIABLE.
70 1 2 NUMBER OF DELETE-OBSERVATIONS CARDS, OBSERVATION
IDENTIFICATION IN 1ST 6 OF 10 COLUMNS, 7 / CARD.
0 SUBROUTINE ARGUMENTS AND DIMENSIONS
SUBROUTINE MODEL1 (NPROB, B, FY, NOB, NC, X, NVARX, NOBMAX, NCMAX, KTOU)
DIMENSION B(NCMAX), FY(NOBMAX), X(NVARX,NOBMAX)
Y = A(X)EXPONENT B
WHERE Y = ENERGY RADIATED FROM CARBON FILAMENT / (CM)SQRD / SEC.
X = ABSOLUTE TEMPERATURE OF FILAMENT IN M DEGREES, KELVIN.
0DATA FORMAT ( A6, 6X, 2F6.0 )
OBSV. NO. IDENT. SEQ. 1-11-21 2-12-22 3-13-23 4-14-24 5-15-25 6-16-26 7-17-27 8-18-28 9-19-29 10-20-30
1 GAUS 1 2.138 1.309
2 HAUS 1 3.421 1.471
3 1 3.597 1.490
4 TEST 1 4.340 1.565
5 1 4.882 1.611
6 PROB 1 5.660 1.680
0OBSERVATIONS DELETED
EXTRA 642531
1NONLINEAR ESTIMATION, EXAMPLE 1, LAMP HEAT
NUMBER OF OBSERVATIONS 6
NUMBER OF COEFFICIENTS 2
STARTING LAMBDA 0.010
STARTING NU 10.000
MAX NO. OF ITERATIONS 10
0INITIAL VALUES OF THE COEFFICIENTS
1 2
0 7.25000E-01 4.00000E+00
0PROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS
1 2
0 1.00000E-02 1.00000E-02
0INITIAL SUM OF SQUARES: 1.4721E-02
ITERATION NO. 1
0EIGENVALUES OF MOMENT MATRIX - PRELIMINARY ANALYSIS
0 2.21970E+02 3.71626E-01
0DETERMINANT: 2.0207E-02
0ANGLE IN SCALED. COORD,=81.30 DEGREES
0VALUES OF COEFFICIENTS
1 2
7.62903E-01 3.87582E+00
0LAMBDA: 1.000E-03 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 4.4737E-03
ITERATION NO. 2
0DETERMINANT: 1.8787E-02
0ANGLE IN SCALED. COORD,=81.52 DEGREES
0VALUES OF COEFFICIENTS
1 2
7.68783E-01 3.86069E+00
0LAMBDA: 1.000E-04 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 4.3174E-03
ITERATION NO. 3
0DETERMINANT: 1.8654E-02
0ANGLE IN SCALED. COORD,=82.14 DEGREES
0VALUES OF COEFFICIENTS
1 2
7.68914E-01 3.86026E+00
0LAMBDA: 1.000E-05 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 4.3173E-03
ITERATION NO. 4
0DETERMINANT: 1.8637E-02
0ANGLE IN SCALED. COORD,=69.50 DEGREES
0DETERMINANT: 1.8655E-02
0ANGLE IN SCALED. COORD,=69.49 DEGREES
0DETERMINANT: 1.8835E-02
0ANGLE IN SCALED. COORD,=69.31 DEGREES
0DETERMINANT: 2.0636E-02
0ANGLE IN SCALED. COORD,=67.59 DEGREES
0DETERMINANT: 3.8735E-02
0ANGLE IN SCALED. COORD,=52.80 DEGREES
0DETERMINANT: 2.2864E-01
0ANGLE IN SCALED. COORD,=13.31 DEGREES
0VALUES OF COEFFICIENTS
1 2
7.68913E-01 3.86026E+00
0LAMBDA: 1.000E-01 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 4.3173E-03
0ITERATION STOPS - RELATIVE CHANGE IN EACH COEFFICIENT LESS THAN: 1.0000E-05
0CORRELATION MATRIX
0DETERMINANT: 7.3241E+01
1 2
1 1.0000
2 -0.9906 1.0000
1 NONLINEAR LEAST-SQUARES CURVE-FITTING PROGRAM
EXAMPLE 1, LAMP HEAT DEP.VAR.: MIN Y = 2.138E+00 MAX Y = 5.660E+00 RANGE Y = 3.522E+00
Y = A(X)EXPONENT B
WHERE Y = ENERGY RADIATED FROM CARBON FILAMENT / (CM)SQRD / SEC.
X = ABSOLUTE TEMPERATURE OF FILAMENT IN M DEGREES, KELVIN.
OBSERVATIONS DELETED: EXTRA 642531
0 95% CONFIDENCE LIMITS
IND.VAR(I) NAME COEF.B(I) S.E. COEF T-VALUE LOWER UPPER
1 A 7.68913E-01 1.82E-02 42.4 7.19E-01 8.19E-01
2 EXP. B 3.86026E+00 5.09E-02 75.9 3.72E+00 4.00E+00
0NO. OF OBSERVATIONS 6
NO. OF COEFFICIENTS 2
RESIDUAL DEGREES OF FREEDOM 4
RESIDUAL ROOT MEAN SQUARE 0.03285315
RESIDUAL MEAN SQUARE 0.00107933
RESIDUAL SUM OF SQUARES 0.00431732
0---------ORDERED BY COMPUTER INPUT---------- ----------------ORDERED BY RESIDUALS-----------------
OBS. NO. OBS. Y FITTED Y RESIDUAL OBS. NO. OBS. Y FITTED Y ORDERED RESID. SEQ.
GAUS 2.138 2.174 -0.036 4.882 4.845 0.037 1
HAUS 3.421 3.411 0.010 3.597 3.584 0.013 2
3.597 3.584 0.013 HAUS 3.421 3.411 0.010 3
TEST 4.340 4.333 0.007 TEST 4.340 4.333 0.007 4
4.882 4.845 0.037 GAUS 2.138 2.174 -0.036 5
PROB 5.660 5.697 -0.037 PROB 5.660 5.697 -0.037 6
1 EXAMPLE 1, LAMP HEAT CUMULATIVE DISTRIBUTION OF RESIDUALS
.0002 .001 .005 .01 .02 .05 .1 .2 3 .4 .5 .6 .7 .8 .9 .95 .98 .99 .995 .999
*-----*-------*--*---*-----*----*-----*----*---*---*---*---*----*-----*----*-----*---*--*-------*-----
I ' + I
I ' I
P I ' I
O I ' I
S I ' I
I I ' I
T I ' I
I I ' I
V I ' I
E I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' + I
I ' I
I ' + I
I ' I
0 I----------------------------------------------+-----------------------------------------------------I
R I ' I
E I ' I
S I ' I
I I ' I
D I ' I
U I ' I
A I ' I
L I ' I
S I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
I ' I
N I ' I
E I ' I
G I ' I
A I ' I
T I ' I
I I ' I
V I ' I
E I ' I
I ' I
I + + ' I
*-----*-------*--*---*-----*----*-----*----*---*---*---*---*----*-----*----*-----*---*--*-------*-----
.0002 .001 .005 .01 .02 .05 .1 .2 3 .4 .5 .6 .7 .8 .9 .95 .98 .99 .995 .999
CUMULATIVE FREQUENCY, NORMAL GRID
1 EXAMPLE 1, LAMP HEAT RESIDUAL VS. FITTED Y
2.174 3.935 5.697
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I I
S I I
I I I
T I I
I I I
V I I
E I I
I I
I I
I I
I I
I I
I I
I + I
I I
I + I
I I
0 I------------------------------------------------------------+---------------------------------------I
R I I
E I I
S I I
I I I
D I I
U I I
A I I
L I I
S I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
N I I
E I I
G I I
A I I
T I I
I I I
V I I
E I I
I I
I+ +I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
2.174 3.935 5.697
FITTED Y
1 EXAMPLE 1, LAMP HEAT RESIDUALS VS. INDEPENDENT VARIABLE 1
1.309 1.402 1.494 1.587 1.680
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I I
S I I
I I I
T I I
I I I
V I I
E I I
I I
I I
I I
I I
I I
I I
I + I
I I
I + I
I I
0 I--------------------------------------------------------------------+-------------------------------I
R I I
E I I
S I I
I I I
D I I
U I I
A I I
L I I
S I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
N I I
E I I
G I I
A I I
T I I
I I I
V I I
E I I
I I
I+ +I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
1.309 1.402 1.494 1.587 1.680
0 INDEPENDENT VARIABLE 1
1END OF PROBLEM EXAMPLE 1, LAMP HEAT
1 NONLINEAR LEAST-SQUARES CURVE-FITTING PROGRAM
1979 VERSION OF THE NONLINWOOD 20 VARIABLE, 20 COEFFICIENT, 170 OBSERVATION PROGRAM
REFER TO FITTING EQUATIONS TO DATA BY DANIEL AND WOOD, SECOND EDITION, WILEY PUBLISHER,
FOR GLOSSARY OF TERMS, USER'S MANUAL, DETAILS OF CALCULATIONS AND INTERPRETATION OF RESULTS.
0CEMENT HEAT, PASS 10
0 CONTROL CARD INFORMATION ORDER OF CARDS
COL. INPUT MAX ITEM (NOTE: BLANK ON CARD = 0) FIRST PROBLEM
1-20 IDENTIFICATION OF PROBLEM. 1 CONTROL CARD.
21 0 0 OBSERVATIONS READ FROM CARDS OR FILE. 2 FORMAT CARD (72 COLUMNS, ORDER: IDENT, Y, X(I)'S),
1 REUSE DATA FROM PREVIOUS PROBLEM. E.G. (A6, F6.0, (NOIND*F6.0) ).
23-24 19 20 NUMBER OF COEFFICIENTS TO BE ESTIMATED. 3 DELETE-OBSERVATIONS CARD(S), IF ANY.
25-26 0 FILE NUMBER IF DATA ARE TO BE READ FROM A 4 STARTING VALUES (GUESSES) OF COEFFICIENTS
SEPARATE FILE. NO END CARD(S) IF ONLY ONE (10 COLUMNS / COEFFICIENT, 7 COEFFICIENTS / CARD).
SET OF DATA IS ON EACH FILE. 5 INFORMATION CARDS FOR PRINTOUT, IF ANY.
27-28 6 20 NUMBER OF INDEPENDENT VARIABLES TO BE READ IN. 6 NAMES OF COEFFICIENTS CARD(S) FOR PRINTOUT, IF ANY.
31-32 5 NUMBER OF EQUATION TO BE USED. 7 DATA CARDS (IF NOT READ FROM A FILE).
8 END CARD (END IN COLUMNS 1 - 3 OF IDENTIFICATION
33-36 0.000 STARTING VALUE FOR LAMBDA, F4.2, (E.G. 0.1), FIELD). THE NUMBER OF END CARDS MUST EQUAL THE
USED AS A MULTIPLIER TO SCALE THE SPACE OR NUMBER OF CARDS PER OBSERVATION. (END CARDS
SIZE OF STEPS TAKEN. ARE NOT NEEDED IF DATA ARE READ FROM A FILE).
37-40 0.000 VALUE OF NU, F4.0, (E.G. 10.).
DIVISOR AND MULTIPLIER TO CHANGE SIZE OF SECOND PROBLEM
LAMBDA DEPENDING ON WHETHER SUM OF SQUARES OF IF DATA ARE REUSED FROM FIRST PROBLEM,
ITERATION IS NEAR OR FAR FROM MINIMUM. DELETE THE FORMAT, DATA AND END CARDS.
43-44 99 MAXIMUM NUMBER OF ITERATIONS, I2, (E.G. 20). IF DIFFERENT DATA,
45-48 0.000 MULTIPLIER USED TO INCREMENT VALUE OF REPEAT 1 - 8 ABOVE.
COEFFICIENTS, F4.3 (E.G. 0.01).
NOTE: IF VALUES IN COLUMNS 33-48 ARE NOT DEFINED
ON THE CONTROL CARD. THEIR LEVEL WILL BE
SET AUTOMATICALLY TO THE ABOVE E.G. VALUES.
CRITERIA FOR ENDING CONVERGING ITERATIONS.
49-56 0.0E+00 SUM OF SQUARES CRITERION, F8.7,
(E.G. 0.0001, A CHANGE OF LESS THAN 0.0001 IN
THE RESIDUAL SUM OF SQUARES).
57-64 1.0E-06 RATIO OF COEFFICIENTS CRITERION, F8.7,
(E.G. 0.001, A CHANGE OF LESS THAN 0.001 IN
THE RATIOS OF ALL COMPARABLE COEFFICIENTS).
NOTE: VALUES IN COLUMNS 49-64 CAN BE SET AT 0.0
IF CONTROL OF EITHER OR BOTH IS NOT DESIRED.
65-66 12 12 NUMBER OF INFORMATION CARDS TO BE READ FOR DISPLAY
ON PRINTOUT IF DESIRED, 72 COLUMNS EACH.
68 1 1 READ NAMES OF COEFFICIENTS FROM CARDS FOR
DISPLAY ON PRINTOUT, 1ST 6 OF 10 COLUMNS /
COEFFICIENT, 7 / CARD.
69 3 3 PLOT RESIDUALS VS. EACH INDEPENDENT VARIABLE.
70 0 2 NUMBER OF DELETE-OBSERVATIONS CARDS, OBSERVATION
IDENTIFICATION IN 1ST 6 OF 10 COLUMNS, 7 / CARD.
0 SUBROUTINE ARGUMENTS AND DIMENSIONS
SUBROUTINE MODEL5 (NPROB, B, FY, NOB, NC, X, NVARX, NOBMAX, NCMAX, KTOU)
DIMENSION B(NCMAX), FY(NOBMAX), X(NVARX,NOBMAX)
Z = H + (G - 1)D' + ( A' / ( T + F' )EXP B )
Z = ACID HEAT OF SOLUTION AT TIME "T"
B, G AND H ARE COMMON TO ALL CEMENTS
A' = A1X1 - A2X2 + A3X3 + A4X4 + A5X5 + A12X1X2 - A13X1X3 - A14X1X4
- A23X2X3 + A24X2X4 - A34X3X4
D' = D1X1 + D2X2 + D3X3 + D4X4 + D5X5
F' = TIME CORRECTION TERM = ( A' / (GD' - H) )EXP(1/B)
X1 = (MOL PERCENT SILICA IN THE CLINKER - 20.9) / 7.43
X2 = (MOL PERCENT ALUMINA - 2.03) / 7.43
X3 = (MOL PERCENT FERRIC OXIDE - 0.44) / 7.43
X4 = (MOL PERCENT LIME - 66.1) / 7.43
X5 = (MOL PERCENT MAGNESIA - 3.10) / 7.43 ; OBSV. 85-3-2 OMITTED.
0DATA FORMAT ( 6X, A4, 2X, 2F6.1/ 12X, 5F10.5 )
OBSV. NO. IDENT. SEQ. 1-11-21 2-12-22 3-13-23 4-14-24 5-15-25 6-16-26 7-17-27 8-18-28 9-19-29 10-20-30
1 22 0 1 588.700 0.000 26.637 2.132 0.717 66.959 3.555
2 22 3 1 537.500 3.000 26.637 2.132 0.717 66.959 3.555
3 22 7 1 535.600 7.000 26.637 2.132 0.717 66.959 3.555
4 2228 1 516.200 28.000 26.637 2.132 0.717 66.959 3.555
5 2290 1 507.500 90.000 26.637 2.132 0.717 66.959 3.555
6 2218 1 510.200 180.000 26.637 2.132 0.717 66.959 3.555
7 2236 1 503.200 365.000 26.637 2.132 0.717 66.959 3.555
8 23 0 1 575.700 0.000 25.703 2.030 1.884 66.961 3.422
9 23 3 1 535.100 3.000 25.703 2.030 1.884 66.961 3.422
10 23 7 1 530.000 7.000 25.703 2.030 1.884 66.961 3.422
11 2328 1 514.700 28.000 25.703 2.030 1.884 66.961 3.422
12 2390 1 503.800 90.000 25.703 2.030 1.884 66.961 3.422
13 2318 1 501.400 180.000 25.703 2.030 1.884 66.961 3.422
14 2336 1 499.700 365.000 25.703 2.030 1.884 66.961 3.422
15 92 0 1 623.600 0.000 21.135 3.275 1.007 67.324 7.258
16 92 0 1 624.100 0.000 21.135 3.275 1.007 67.324 7.258
17 92 3 1 548.800 3.000 21.135 3.275 1.007 67.324 7.258
18 92 7 1 538.900 7.000 21.135 3.275 1.007 67.324 7.258
19 9228 1 531.400 28.000 21.135 3.275 1.007 67.324 7.258
20 9290 1 523.000 90.000 21.135 3.275 1.007 67.324 7.258
21 9218 1 519.300 180.000 21.135 3.275 1.007 67.324 7.258
22 9236 1 513.200 365.000 21.135 3.275 1.007 67.324 7.258
23 88 0 1 595.500 0.000 24.258 3.399 1.039 67.779 3.525
24 88 3 1 542.300 3.000 24.258 3.399 1.039 67.779 3.525
25 88 7 1 532.400 7.000 24.258 3.399 1.039 67.779 3.525
26 8828 1 521.800 28.000 24.258 3.399 1.039 67.779 3.525
27 8890 1 517.800 90.000 24.258 3.399 1.039 67.779 3.525
28 8818 1 507.900 180.000 24.258 3.399 1.039 67.779 3.525
29 8836 1 504.900 365.000 24.258 3.399 1.039 67.779 3.525
30 96 0 1 604.500 0.000 24.330 2.210 0.771 69.273 3.416
31 96 0 1 603.200 0.000 24.330 2.210 0.771 69.273 3.416
32 96 3 1 532.600 3.000 24.330 2.210 0.771 69.273 3.416
33 96 7 1 525.700 7.000 24.330 2.210 0.771 69.273 3.416
34 9628 1 515.700 28.000 24.330 2.210 0.771 69.273 3.416
35 9690 1 511.900 90.000 24.330 2.210 0.771 69.273 3.416
36 9618 1 508.600 180.000 24.330 2.210 0.771 69.273 3.416
37 9636 1 501.000 365.000 24.330 2.210 0.771 69.273 3.416
38 85 0 1 618.800 0.000 21.918 3.570 1.053 69.905 3.554
39 85 3 1 538.200 3.000 21.918 3.570 1.053 69.905 3.554
40 85 7 1 528.500 7.000 21.918 3.570 1.053 69.905 3.554
41 85 7 1 530.200 7.000 21.918 3.570 1.053 69.905 3.554
42 8528 1 517.800 28.000 21.918 3.570 1.053 69.905 3.554
43 8528 1 517.100 28.000 21.918 3.570 1.053 69.905 3.554
44 8590 1 515.100 90.000 21.918 3.570 1.053 69.905 3.554
45 8590 1 514.300 90.000 21.918 3.570 1.053 69.905 3.554
46 8518 1 509.600 180.000 21.918 3.570 1.053 69.905 3.554
47 8518 1 511.800 180.000 21.918 3.570 1.053 69.905 3.554
48 8536 1 509.000 365.000 21.918 3.570 1.053 69.905 3.554
49 8536 1 508.500 365.000 21.918 3.570 1.053 69.905 3.554
50 94 0 1 610.000 0.000 20.954 2.737 2.161 71.045 3.102
51 94 0 1 611.700 0.000 20.954 2.737 2.161 71.045 3.102
52 94 3 1 532.700 3.000 20.954 2.737 2.161 71.045 3.102
53 94 7 1 522.500 7.000 20.954 2.737 2.161 71.045 3.102
54 9428 1 517.600 28.000 20.954 2.737 2.161 71.045 3.102
55 9490 1 509.500 90.000 20.954 2.737 2.161 71.045 3.102
56 9418 1 507.300 180.000 20.954 2.737 2.161 71.045 3.102
57 9436 1 502.000 365.000 20.954 2.737 2.161 71.045 3.102
58 24 0 1 573.000 0.000 23.810 2.878 2.743 67.194 3.375
59 24 3 1 530.900 3.000 23.810 2.878 2.743 67.194 3.375
60 24 7 1 526.200 7.000 23.810 2.878 2.743 67.194 3.375
61 2428 1 511.500 28.000 23.810 2.878 2.743 67.194 3.375
62 2490 1 503.000 90.000 23.810 2.878 2.743 67.194 3.375
63 2418 1 500.500 180.000 23.810 2.878 2.743 67.194 3.375
64 2436 1 501.400 365.000 23.810 2.878 2.743 67.194 3.375
65 89 0 1 599.000 0.000 22.170 2.766 2.301 69.274 3.489
66 89 3 1 534.300 3.000 22.170 2.766 2.301 69.274 3.489
67 89 7 1 521.100 7.000 22.170 2.766 2.301 69.274 3.489
68 8928 1 513.200 28.000 22.170 2.766 2.301 69.274 3.489
69 8990 1 508.900 90.000 22.170 2.766 2.301 69.274 3.489
70 8918 1 505.900 180.000 22.170 2.766 2.301 69.274 3.489
71 8936 1 502.000 365.000 22.170 2.766 2.301 69.274 3.489
72 90 0 1 633.400 0.000 20.966 5.076 0.438 69.792 3.729
73 90 3 1 543.900 3.000 20.966 5.076 0.438 69.792 3.729
74 90 7 1 536.800 7.000 20.966 5.076 0.438 69.792 3.729
75 9028 1 524.600 28.000 20.966 5.076 0.438 69.792 3.729
76 9090 1 519.300 90.000 20.966 5.076 0.438 69.792 3.729
77 9018 1 517.500 180.000 20.966 5.076 0.438 69.792 3.729
78 9036 1 510.700 365.000 20.966 5.076 0.438 69.792 3.729
79 25 0 1 585.900 0.000 22.767 2.983 2.842 68.029 3.379
80 25 3 1 527.100 3.000 22.767 2.983 2.842 68.029 3.379
81 25 7 1 523.100 7.000 22.767 2.983 2.842 68.029 3.379
82 2528 1 511.700 28.000 22.767 2.983 2.842 68.029 3.379
83 2590 1 507.800 90.000 22.767 2.983 2.842 68.029 3.379
84 2518 1 502.100 180.000 22.767 2.983 2.842 68.029 3.379
85 2536 1 502.800 365.000 22.767 2.983 2.842 68.029 3.379
86 95 0 1 625.600 0.000 21.000 3.519 1.085 70.644 3.753
87 95 3 1 540.800 3.000 21.000 3.519 1.085 70.644 3.753
88 95 7 1 531.100 7.000 21.000 3.519 1.085 70.644 3.753
89 9528 1 521.900 28.000 21.000 3.519 1.085 70.644 3.753
90 9590 1 518.100 90.000 21.000 3.519 1.085 70.644 3.753
91 9518 1 512.300 180.000 21.000 3.519 1.085 70.644 3.753
92 9536 1 510.200 365.000 21.000 3.519 1.085 70.644 3.753
93 91 0 1 624.000 0.000 21.430 3.205 0.985 70.830 3.550
94 91 3 1 540.000 3.000 21.430 3.205 0.985 70.830 3.550
95 91 7 1 532.700 7.000 21.430 3.205 0.985 70.830 3.550
96 9128 1 524.100 28.000 21.430 3.205 0.985 70.830 3.550
97 9190 1 517.800 90.000 21.430 3.205 0.985 70.830 3.550
98 9118 1 514.600 180.000 21.430 3.205 0.985 70.830 3.550
99 9136 1 507.700 365.000 21.430 3.205 0.985 70.830 3.550
100 70 0 1 564.700 0.000 26.004 2.454 2.304 66.105 3.133
101 70 3 1 536.400 3.000 26.004 2.454 2.304 66.105 3.133
102 70 7 1 528.400 7.000 26.004 2.454 2.304 66.105 3.133
103 7028 1 514.900 28.000 26.004 2.454 2.304 66.105 3.133
104 7036 1 502.100 365.000 26.004 2.454 2.304 66.105 3.133
1NONLINEAR ESTIMATION, CEMENT HEAT, PASS 10
NUMBER OF OBSERVATIONS 104
NUMBER OF COEFFICIENTS 19
STARTING LAMBDA 0.100
STARTING NU 10.000
MAX NO. OF ITERATIONS 99
0INITIAL VALUES OF THE COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
0 2.00000E-01 7.18000E-01 3.14500E+02 8.17300E+01 3.16700E+01 3.16210E+02 7.09400E+01 9.08000E+01 3.45880E+02 3.17090E+02
0 8.62200E+01 8.35930E+02 1.51800E+02 3.46500E+02 5.75760E+02 6.21510E+02 5.21240E+02 6.41440E+02 6.36770E+02
0PROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
0 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02
0 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02 1.00000E-02
0INITIAL SUM OF SQUARES: 3.9992E+02
ITERATION NO. 1
0EIGENVALUES OF MOMENT MATRIX - PRELIMINARY ANALYSIS
0 5.09908E+04 3.24042E+07 9.39654E-03 1.16877E+00 8.54829E-02 1.53994E-01 1.14956E-01 3.85932E-01 1.09589E-03 1.28952E-02
0 3.51723E-02 1.85651E-05 3.14966E-04 4.67287E-03 3.30869E+00 2.62897E-01 4.98773E-01 4.38149E+00 9.30626E-01
0DETERMINANT: 7.7429E-14
0ANGLE IN SCALED. COORD,=76.20 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.95805E-01 7.17641E-01 3.14768E+02 8.46629E+01 3.11675E+01 3.16190E+02 6.83895E+01 8.95848E+01 3.15510E+02 3.29678E+02
8.81634E+01 7.91087E+02 1.57750E+02 3.45293E+02 5.75590E+02 6.22689E+02 5.21658E+02 6.40774E+02 6.36485E+02
0LAMBDA: 1.000E-02 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.4066E+02
ITERATION NO. 2
0DETERMINANT: 2.4685E-17
0ANGLE IN SCALED. COORD,=74.52 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.94968E-01 7.17891E-01 3.14802E+02 8.51822E+01 3.68343E+01 3.16018E+02 6.63200E+01 9.07564E+01 3.17430E+02 3.32079E+02
8.60768E+01 7.79583E+02 1.74111E+02 3.41224E+02 5.75546E+02 6.22676E+02 5.21709E+02 6.40781E+02 6.36474E+02
0LAMBDA: 1.000E-03 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.4006E+02
ITERATION NO. 3
0DETERMINANT: 3.5755E-19
0ANGLE IN SCALED. COORD,=70.40 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.95323E-01 7.18714E-01 3.15354E+02 8.50836E+01 4.40866E+01 3.22563E+02 6.53750E+01 9.19969E+01 3.28389E+02 3.40612E+02
8.52377E+01 7.98366E+02 1.90091E+02 3.47105E+02 5.75544E+02 6.22691E+02 5.21699E+02 6.40783E+02 6.36471E+02
0LAMBDA: 1.000E-04 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.3996E+02
ITERATION NO. 4
0DETERMINANT: 8.9001E-20
0ANGLE IN SCALED. COORD,=87.88 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.95963E-01 7.20117E-01 3.16309E+02 8.49991E+01 4.64816E+01 3.26772E+02 6.53453E+01 9.22813E+01 3.33143E+02 3.46569E+02
8.55303E+01 8.10888E+02 1.94699E+02 3.52482E+02 5.75542E+02 6.22705E+02 5.21680E+02 6.40787E+02 6.36473E+02
0LAMBDA: 1.000E-05 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.3996E+02
ITERATION NO. 5
0DETERMINANT: 7.3680E-20
0ANGLE IN SCALED. COORD,=89.44 DEGREES
0DETERMINANT: 9.1750E-20
0ANGLE IN SCALED. COORD,=89.38 DEGREES
0DETERMINANT: 3.7238E-19
0ANGLE IN SCALED. COORD,=88.92 DEGREES
0DETERMINANT: 2.5334E-17
0ANGLE IN SCALED. COORD,=85.76 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.95890E-01 7.20147E-01 3.16317E+02 8.49911E+01 4.65429E+01 3.26843E+02 6.53315E+01 9.22938E+01 3.33206E+02 3.46713E+02
8.54601E+01 8.11141E+02 1.94882E+02 3.52489E+02 5.75543E+02 6.22704E+02 5.21679E+02 6.40787E+02 6.36472E+02
0LAMBDA: 1.000E-03 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.3996E+02
ITERATION NO. 6
0DETERMINANT: 3.7191E-19
0ANGLE IN SCALED. COORD,=83.45 DEGREES
0DETERMINANT: 2.5313E-17
0ANGLE IN SCALED. COORD,=82.57 DEGREES
0DETERMINANT: 7.6648E-14
0ANGLE IN SCALED. COORD,=80.87 DEGREES
0DETERMINANT: 7.7483E-08
0ANGLE IN SCALED. COORD,=73.29 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.95889E-01 7.20147E-01 3.16318E+02 8.49909E+01 4.65435E+01 3.26844E+02 6.53313E+01 9.22943E+01 3.33207E+02 3.46716E+02
8.54589E+01 8.11138E+02 1.94884E+02 3.52489E+02 5.75543E+02 6.22704E+02 5.21679E+02 6.40787E+02 6.36472E+02
0LAMBDA: 1.000E-01 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.3996E+02
ITERATION NO. 7
0DETERMINANT: 7.6648E-14
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0ANGLE IN SCALED. COORD,=25.38 DEGREES
0VALUES OF COEFFICIENTS
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1.95889E-01 7.20147E-01 3.16318E+02 8.49909E+01 4.65435E+01 3.26844E+02 6.53313E+01 9.22943E+01 3.33207E+02 3.46716E+02
8.54589E+01 8.11138E+02 1.94884E+02 3.52489E+02 5.75543E+02 6.22704E+02 5.21679E+02 6.40787E+02 6.36472E+02
0LAMBDA: 1.000E-02 SUM OF SQUARES AFTER LEAST-SQUARES FIT: 3.3996E+02
0ITERATION STOPS - RELATIVE CHANGE IN EACH COEFFICIENT LESS THAN: 1.0000E-06
0CORRELATION MATRIX
0DETERMINANT: 2.9753E-10
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
1 1.0000
2 0.3076 1.0000
3 0.4897 0.9797 1.0000
4 -0.4649 -0.4374 -0.5048 1.0000
5 0.1662 -0.0414 -0.0038 0.0101 1.0000
6 0.0976 -0.0949 -0.0672 0.2418 0.7787 1.0000
7 -0.2336 0.1226 0.0615 0.2794 -0.3376 0.1898 1.0000
8 -0.0786 0.1086 0.0783 -0.1329 0.7563 0.2996 -0.5382 1.0000
9 0.1909 -0.0184 0.0222 0.0283 0.9345 0.8960 -0.1089 0.5940 1.0000
10 0.1276 -0.0577 -0.0266 0.2791 0.7586 0.9938 0.2041 0.2653 0.8788 1.0000
11 0.3356 0.1196 0.1802 0.2996 0.0727 0.4665 0.6239 -0.3582 0.2886 0.5094
1.0000
12 0.1539 -0.0399 -0.0048 0.1223 0.7727 0.9754 0.1495 0.3304 0.9156 0.9608
0.4401 1.0000
13 0.0989 -0.0469 -0.0235 0.0052 0.9801 0.6908 -0.4717 0.8196 0.8775 0.6676
-0.0819 0.6892 1.0000
14 0.1448 -0.0384 -0.0052 0.2403 0.6954 0.9793 0.3299 0.1764 0.8327 0.9816
0.5766 0.9379 0.5821 1.0000
15 0.0355 -0.0488 -0.0389 -0.1597 0.0128 0.0218 -0.0157 -0.0006 0.0125 0.0119
0.0038 0.0119 0.0090 0.0119 1.0000
16 0.0266 0.0488 0.0486 -0.0164 0.0465 0.0027 0.0656 0.0827 0.0052 0.0040
0.0067 0.0051 0.0053 0.0037 0.0329 1.0000
17 -0.0419 -0.1010 -0.1016 0.1389 0.0028 -0.0118 0.0171 0.0035 -0.0013 0.0018
-0.0231 -0.0016 0.0072 -0.0033 -0.5033 -0.0334 1.0000
18 -0.0336 0.0588 0.0458 0.0029 -0.0443 -0.0048 -0.0559 -0.0167 -0.0124 -0.0110
-0.0005 -0.0104 -0.0141 -0.0081 -0.0057 -0.6649 -0.3806 1.0000
19 0.0420 0.0261 0.0327 -0.0201 -0.0171 0.0004 -0.0238 -0.1440 0.0052 0.0011
0.0153 0.0025 0.0003 0.0029 -0.0355 -0.4840 -0.0455 0.1980 1.0000
1 NONLINEAR LEAST-SQUARES CURVE-FITTING PROGRAM
CEMENT HEAT, PASS 10 DEP.VAR.: MIN Y = 4.997E+02 MAX Y = 6.334E+02 RANGE Y = 1.337E+02
Z = H + (G - 1)D' + ( A' / ( T + F' )EXP B )
Z = ACID HEAT OF SOLUTION AT TIME "T"
B, G AND H ARE COMMON TO ALL CEMENTS
A' = A1X1 - A2X2 + A3X3 + A4X4 + A5X5 + A12X1X2 - A13X1X3 - A14X1X4
- A23X2X3 + A24X2X4 - A34X3X4
D' = D1X1 + D2X2 + D3X3 + D4X4 + D5X5
F' = TIME CORRECTION TERM = ( A' / (GD' - H) )EXP(1/B)
X1 = (MOL PERCENT SILICA IN THE CLINKER - 20.9) / 7.43
X2 = (MOL PERCENT ALUMINA - 2.03) / 7.43
X3 = (MOL PERCENT FERRIC OXIDE - 0.44) / 7.43
X4 = (MOL PERCENT LIME - 66.1) / 7.43
X5 = (MOL PERCENT MAGNESIA - 3.10) / 7.43 ; OBSV. 85-3-2 OMITTED.
0 95% CONFIDENCE LIMITS
IND.VAR(I) NAME COEF.B(I) S.E. COEF T-VALUE LOWER UPPER
1 B 1.95889E-01 2.81E-02 7.0 1.40E-01 2.52E-01
2 G 7.20147E-01 3.39E-02 21.2 6.52E-01 7.88E-01
3 H 3.16318E+02 2.23E+01 14.2 2.72E+02 3.61E+02
4 A1 8.49909E+01 4.80E+00 17.7 7.54E+01 9.46E+01
5 A2 4.65435E+01 6.42E+01 0.7 -8.19E+01 1.75E+02
6 A3 3.26844E+02 1.26E+02 2.6 7.50E+01 5.79E+02
7 A4 6.53313E+01 1.10E+01 5.9 4.33E+01 8.73E+01
8 A5 9.22943E+01 1.03E+01 9.0 7.17E+01 1.13E+02
9 A12 3.33207E+02 1.23E+02 2.7 8.77E+01 5.79E+02
10 A13 3.46716E+02 1.71E+02 2.0 5.37E+00 6.88E+02
11 A14 8.54589E+01 2.07E+01 4.1 4.41E+01 1.27E+02
12 A23 8.11138E+02 3.52E+02 2.3 1.08E+02 1.51E+03
13 A24 1.94884E+02 1.31E+02 1.5 -6.73E+01 4.57E+02
14 A34 3.52489E+02 1.62E+02 2.2 2.86E+01 6.76E+02
15 D1 5.75543E+02 1.62E+00 356.4 5.72E+02 5.79E+02
16 D2 6.22704E+02 5.47E+00 113.8 6.12E+02 6.34E+02
17 D3 5.21679E+02 4.22E+00 123.6 5.13E+02 5.30E+02
18 D4 6.40787E+02 2.08E+00 308.8 6.37E+02 6.45E+02
19 D5 6.36472E+02 2.94E+00 216.3 6.31E+02 6.42E+02
0NO. OF OBSERVATIONS 104
NO. OF COEFFICIENTS 19
RESIDUAL DEGREES OF FREEDOM 85
RESIDUAL ROOT MEAN SQUARE 1.99988029
RESIDUAL MEAN SQUARE 3.99952118
RESIDUAL SUM OF SQUARES 339.95930046
0---------ORDERED BY COMPUTER INPUT---------- ----------------ORDERED BY RESIDUALS-----------------
OBS. NO. OBS. Y FITTED Y RESIDUAL OBS. NO. OBS. Y FITTED Y ORDERED RESID. SEQ.
22 0 588.700 585.463 3.237 22 7 535.600 530.920 4.680 1
22 3 537.500 539.714 -2.214 8890 517.800 513.630 4.170 2
22 7 535.600 530.920 4.680 2536 502.800 499.023 3.777 3
2228 516.200 518.988 -2.788 23 7 530.000 526.293 3.707 4
2290 507.500 511.075 -3.575 22 0 588.700 585.463 3.237 5
2218 510.200 507.155 3.045 2218 510.200 507.155 3.045 6
2236 503.200 503.666 -0.466 89 3 534.300 531.466 2.834 7
23 0 575.700 575.275 0.425 2590 507.800 505.154 2.646 8
23 3 535.100 534.707 0.393 7036 502.100 499.554 2.546 9
23 7 530.000 526.293 3.707 25 0 585.900 583.411 2.489 10
2328 514.700 514.806 -0.106 9228 531.400 529.151 2.249 11
2390 503.800 507.170 -3.370 2436 501.400 499.160 2.240 12
2318 501.400 503.384 -1.984 9590 518.100 515.864 2.236 13
2336 499.700 500.015 -0.315 9690 511.900 509.853 2.047 14
92 0 623.600 624.187 -0.587 24 7 526.200 524.247 1.953 15
92 0 624.100 624.187 -0.087 9618 508.600 506.769 1.831 16
92 3 548.800 549.931 -1.131 95 3 540.800 538.998 1.802 17
92 7 538.900 541.006 -2.106 9218 519.300 517.504 1.796 18
9228 531.400 529.151 2.249 9428 517.600 515.811 1.789 19
9290 523.000 521.358 1.642 9290 523.000 521.358 1.642 20
9218 519.300 517.504 1.796 9018 517.500 515.926 1.574 21
9236 513.200 514.077 -0.877 25 7 523.100 521.675 1.425 22
88 0 595.500 598.129 -2.629 94 3 532.700 531.417 1.283 23
88 3 542.300 541.621 0.679 9118 514.600 513.326 1.274 24
88 7 532.400 532.936 -0.536 9190 517.800 516.568 1.232 25
8828 521.800 521.303 0.497 89 0 599.000 597.782 1.218 26
8890 517.800 513.630 4.170 8590 515.100 513.930 1.170 27
8818 507.900 509.833 -1.933 8518 511.800 510.800 1.000 28
8836 504.900 506.456 -1.556 8536 509.000 508.016 0.984 29
96 0 604.500 604.740 -0.240 85 3 538.200 537.221 0.979 30
96 0 603.200 604.740 -1.540 9128 524.100 523.130 0.970 31
96 3 532.600 532.782 -0.182 90 0 633.400 632.467 0.933 32
96 7 525.700 525.600 0.100 90 7 536.800 536.008 0.792 33
9628 515.700 516.094 -0.394 8918 505.900 505.118 0.782 34
9690 511.900 509.853 2.047 85 0 618.800 618.019 0.781 35
9618 508.600 506.769 1.831 94 0 611.700 610.995 0.705 36
9636 501.000 504.026 -3.026 88 3 542.300 541.621 0.679 37
85 0 618.800 618.019 0.781 8990 508.900 508.245 0.655 38
85 3 538.200 537.221 0.979 8828 521.800 521.303 0.497 39
85 7 528.500 529.917 -1.417 8536 508.500 508.016 0.484 40
85 7 530.200 529.917 0.283 23 0 575.700 575.275 0.425 41
8528 517.800 520.264 -2.464 23 3 535.100 534.707 0.393 42
8528 517.100 520.264 -3.164 8590 514.300 513.930 0.370 43
8590 515.100 513.930 1.170 85 7 530.200 529.917 0.283 44
8590 514.300 513.930 0.370 70 7 528.400 528.175 0.225 45
8518 509.600 510.800 -1.200 90 3 543.900 543.684 0.216 46
8518 511.800 510.800 1.000 9536 510.200 509.993 0.207 47
8536 509.000 508.016 0.984 9418 507.300 507.106 0.194 48
8536 508.500 508.016 0.484 2518 502.100 501.909 0.191 49
94 0 610.000 610.995 -0.995 96 7 525.700 525.600 0.100 50
94 0 611.700 610.995 0.705 9090 519.300 519.213 0.087 51
94 3 532.700 531.417 1.283 95 0 625.600 625.576 0.024 52
94 7 522.500 524.693 -2.193 2528 511.700 511.713 -0.013 53
9428 517.600 515.811 1.789 92 0 624.100 624.187 -0.087 54
9490 509.500 509.985 -0.485 2328 514.700 514.806 -0.106 55
9418 507.300 507.106 0.194 96 3 532.600 532.782 -0.182 56
9436 502.000 504.546 -2.546 96 0 604.500 604.740 -0.240 57
24 0 573.000 576.096 -3.096 9528 521.900 522.153 -0.253 58
24 3 530.900 532.367 -1.467 91 0 624.000 624.281 -0.281 59
24 7 526.200 524.247 1.953 2336 499.700 500.015 -0.315 60
2428 511.500 513.256 -1.756 70 0 564.700 565.030 -0.330 61
2490 503.000 505.975 -2.975 8936 502.000 502.336 -0.336 62
2418 500.500 502.369 -1.869 70 3 536.400 536.785 -0.385 63
2436 501.400 499.160 2.240 9628 515.700 516.094 -0.394 64
89 0 599.000 597.782 1.218 91 7 532.700 533.130 -0.430 65
89 3 534.300 531.466 2.834 9518 512.300 512.757 -0.457 66
89 7 521.100 524.201 -3.101 2236 503.200 503.666 -0.466 67
8928 513.200 514.571 -1.371 9490 509.500 509.985 -0.485 68
8990 508.900 508.245 0.655 88 7 532.400 532.936 -0.536 69
8918 505.900 505.118 0.782 92 0 623.600 624.187 -0.587 70
8936 502.000 502.336 -0.336 95 7 531.100 531.739 -0.639 71
90 0 633.400 632.467 0.933 91 3 540.000 540.696 -0.696 72
90 3 543.900 543.684 0.216 9236 513.200 514.077 -0.877 73
90 7 536.800 536.008 0.792 7028 514.900 515.829 -0.929 74
9028 524.600 525.866 -1.266 94 0 610.000 610.995 -0.995 75
9090 519.300 519.213 0.087 92 3 548.800 549.931 -1.131 76
9018 517.500 515.926 1.574 8518 509.600 510.800 -1.200 77
9036 510.700 513.002 -2.302 9028 524.600 525.866 -1.266 78
25 0 585.900 583.411 2.489 8928 513.200 514.571 -1.371 79
25 3 527.100 529.146 -2.046 85 7 528.500 529.917 -1.417 80
25 7 523.100 521.675 1.425 24 3 530.900 532.367 -1.467 81
2528 511.700 511.713 -0.013 96 0 603.200 604.740 -1.540 82
2590 507.800 505.154 2.646 8836 504.900 506.456 -1.556 83
2518 502.100 501.909 0.191 2428 511.500 513.256 -1.756 84
2536 502.800 499.023 3.777 2418 500.500 502.369 -1.869 85
95 0 625.600 625.576 0.024 8818 507.900 509.833 -1.933 86
95 3 540.800 538.998 1.802 2318 501.400 503.384 -1.984 87
95 7 531.100 531.739 -0.639 25 3 527.100 529.146 -2.046 88
9528 521.900 522.153 -0.253 92 7 538.900 541.006 -2.106 89
9590 518.100 515.864 2.236 94 7 522.500 524.693 -2.193 90
9518 512.300 512.757 -0.457 22 3 537.500 539.714 -2.214 91
9536 510.200 509.993 0.207 9036 510.700 513.002 -2.302 92
91 0 624.000 624.281 -0.281 8528 517.800 520.264 -2.464 93
91 3 540.000 540.696 -0.696 9436 502.000 504.546 -2.546 94
91 7 532.700 533.130 -0.430 88 0 595.500 598.129 -2.629 95
9128 524.100 523.130 0.970 9136 507.700 510.442 -2.742 96
9190 517.800 516.568 1.232 2228 516.200 518.988 -2.788 97
9118 514.600 513.326 1.274 2490 503.000 505.975 -2.975 98
9136 507.700 510.442 -2.742 9636 501.000 504.026 -3.026 99
70 0 564.700 565.030 -0.330 24 0 573.000 576.096 -3.096 100
70 3 536.400 536.785 -0.385 89 7 521.100 524.201 -3.101 101
70 7 528.400 528.175 0.225 8528 517.100 520.264 -3.164 102
7028 514.900 515.829 -0.929 2390 503.800 507.170 -3.370 103
7036 502.100 499.554 2.546 2290 507.500 511.075 -3.575 104
1 CEMENT HEAT, PASS 10 CUMULATIVE DISTRIBUTION OF RESIDUALS
.0002 .001 .005 .01 .02 .05 .1 .2 3 .4 .5 .6 .7 .8 .9 .95 .98 .99 .995 .999
*-----*-------*--*---*-----*----*-----*----*---*---*---*---*----*-----*----*-----*---*--*-------*-----
I ' + I
I ' I
P I ' I
O I ' + I
S I ' I
I I ' + + I
T I ' I
I I ' I
V I ' + I
E I ' I
I ' + I
I ' + I
I ' + I
I ' + I
I ' ++ I
I ' + I
I ' ++ I
I ' ++ I
I ' + I
I ' + I
I ' ++ I
R I ' ++ I
E I ' ++ I
S I ' ++ I
I I ' + I
D I ' + I
U I ' ++ I
A I '++ I
L 0 I-------------------------------------------------++-------------------------------------------------I
S I ++' I
I +++ ' I
I +++ ' I
I ++ ' I
I + ' I
I ++ ' I
I + ' I
I ++ ' I
I ++ ' I
I + ' I
I + ' I
I ++ ' I
N I + ' I
E I ++ ' I
G I + ' I
A I ++ ' I
T I ++ ' I
I I ' I
V I + ++ + ' I
E I + ' I
I + ' I
I + ' I
*-----*-------*--*---*-----*----*-----*----*---*---*---*---*----*-----*----*-----*---*--*-------*-----
.0002 .001 .005 .01 .02 .05 .1 .2 3 .4 .5 .6 .7 .8 .9 .95 .98 .99 .995 .999
CUMULATIVE FREQUENCY, NORMAL GRID
1 CEMENT HEAT, PASS 10 RESIDUAL VS. FITTED Y
499.023 565.745 632.467
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I + I
S I I
I I+ + I
T I I
I I I
V I + I
E I I
I + I
I + I
I + I
I+ + I
I+ + I
I + I
I + + I
I + ++ + I
I + I
I + I
I + + + I
R I + + + I
E I + + + + I
S I + + + +I
I I + + + I
D I + + I
U I + + + I
A I + + + + + + I
L 0 I--------+-----+----+--------------------------------------------------------------------------+-----I
S I + + + I
I++ + + + + I
I + + + + + + I
I ++ + I
I + I
I ++ + I
I + I
I + + I
I + + + I
I + + I
I + I
I ++ + I
N I + + I
E I + + + I
G I + I
A I + + I
T I + + I
I I I
V I + + + + I
E I + I
I + I
I + I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
499.023 565.745 632.467
FITTED Y
1 CEMENT HEAT, PASS 10 RESIDUALS VS. INDEPENDENT VARIABLE 1
0.000 91.250 182.500 273.750 365.000
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I+ I
I I
P I I
O I + I
S I I
I I +I
T I+ I
I I I
V I+ I
E I I
I + I
I+ I
I + I
I+ +I
I I
I + + +I
I+ + I
I+ + + I
I + I
I + I
I+ I
R I+ + + I
E I+ + + +I
S I+ I
I I+ + + I
D I + +I
U I+ + I
A I+ + +I
L 0 I+-----+----------------+----------------------------------------------------------------------------I
S I+ + I
I+ + +I
I+ + + + +I
I+ I
I+ I
I + +I
I+ I
I + + I
I+ + I
I+ +I
I + I
I + I
N I+ + I
E I+ I
G I +I
A I + +I
T I+ +I
I I + I
V I + +I
E I+ + I
I + I
I + I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
0.000 91.250 182.500 273.750 365.000
0 INDEPENDENT VARIABLE 1
1 CEMENT HEAT, PASS 10 RESIDUALS VS. INDEPENDENT VARIABLE 2
20.954 22.375 23.796 25.216 26.637
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I +I
I I
P I I
O I + I
S I I
I I + I
T I + I
I I I
V I +I
E I I
I +I
I + I
I + I
I + + I
I I
I+ + + I
I + + I
I+ + + I
I + I
I+ I
I+ + I
R I + + + I
E I + + I
S I+ I
I I+ + + + I
D I + + I
U I + + I
A I+ + + + I
L 0 I+------------------------------+--------------------------+-----------------------------------------I
S I + + I
I+ + + + + + I
I+ + + + +I
I+ + + I
I + I
I + + I
I+ + I
I+ + I
I + + + I
I ++ I
I + I
I + + I
N I + + + I
E I+ +I
G I+ I
A I+ + I
T I + + I
I I +I
V I + + I
E I + + + I
I + I
I +I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
20.954 22.375 23.796 25.216 26.637
0 INDEPENDENT VARIABLE 2
1 CEMENT HEAT, PASS 10 RESIDUALS VS. INDEPENDENT VARIABLE 3
2.030 2.791 3.553 4.314 5.076
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I + I
S I I
I I + I
T I+ I
I I I
V I + I
E I I
I + I
I + I
I + I
I + + I
I I
I + + + I
I + + I
I + + + + I
I + I
I +I
I + + I
R I + + + I
E I + + I
S I +I
I I ++ + + +I
D I + + I
U I+ + I
A I + + + + + +I
L 0 I----+-------------------------+-----------------+--------------------------------------------------+I
S I+ + I
I+ + + + + + I
I + + + + + + I
I + + + I
I + I
I + + I
I + + I
I + +I
I + + + I
I + + I
I + I
I + + I
N I+ + + I
E I + + I
G I +I
A I + + I
T I + + I
I I + I
V I + + I
E I + + + I
I+ I
I + I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
2.030 2.791 3.553 4.314 5.076
0 INDEPENDENT VARIABLE 3
1 CEMENT HEAT, PASS 10 RESIDUALS VS. INDEPENDENT VARIABLE 4
0.438 1.039 1.640 2.241 2.842
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I + I
S I I
I I +I
T I + I
I I I
V I + I
E I I
I + I
I + I
I +I
I + +I
I I
I + + + I
I + + I
I + + + + I
I + I
I+ I
I + +I
R I + + + I
E I + + I
S I+ I
I I+ + + + I
D I + I
U I + + I
A I+ + + + + +I
L 0 I+------------+------------+------------------------------------------------------------------------+I
S I + + I
I + + + + + I
I + + + + + + I
I + + + I
I + I
I + + I
I + + I
I+ + I
I + + + I
I + + I
I + I
I + + I
N I + + +I
E I + + I
G I+ I
A I + + I
T I + + I
I I + I
V I + + I
E I + + + I
I + I
I + I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
0.438 1.039 1.640 2.241 2.842
0 INDEPENDENT VARIABLE 4
1 CEMENT HEAT, PASS 10 RESIDUALS VS. INDEPENDENT VARIABLE 5
66.105 67.340 68.575 69.810 71.045
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I + I
S I I
I I + I
T I + I
I I I
V I + I
E I I
I + I
I + I
I + I
I+ + I
I I
I + + + I
I + + I
I + + + +I
I + I
I + I
I + +I
R I + + + I
E I + + I
S I + I
I I + + + + +I
D I + + I
U I + + I
A I+ + + + + +I
L 0 I--------------------------------------+------------------------+----------+----------------+--------I
S I + + I
I+ + + + + I
I+ + + + + +I
I + + + I
I + I
I+ + I
I + +I
I + + I
I + + + I
I + + I
I + I
I + + I
N I + + + I
E I + +I
G I + I
A I + +I
T I + + I
I I + I
V I + + I
E I + + + I
I + I
I + I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
66.105 67.340 68.575 69.810 71.045
0 INDEPENDENT VARIABLE 5
1 CEMENT HEAT, PASS 10 RESIDUALS VS. INDEPENDENT VARIABLE 6
3.102 4.141 5.180 6.219 7.258
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
I + I
I I
P I I
O I + I
S I I
I I + I
T I + I
I I I
V I + I
E I I
I + I
I + I
I + I
I+ + I
I I
I + + +I
I ++ I
I+ + + +I
I +I
I + I
I+ + I
R I ++ I
E I + I
S I + I
I I+ ++ + I
D I + I
U I + + I
A I+ + + + I
L 0 I-----++-------+-------------------------------------------------------------------------------------I
S I + +I
I+ + ++ + I
I+ + ++ + I
I + + +I
I + I
I+ +I
I+ +I
I + + I
I + ++ I
I + + I
I + I
I + + I
N I ++ +I
E I+ + I
G I + I
A I+ + I
T I + I
I I + I
V I ++ I
E I + ++ I
I + I
I + I
*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*----*-
3.102 4.141 5.180 6.219 7.258
0 INDEPENDENT VARIABLE 6
1END OF PROBLEM CEMENT HEAT, PASS 10
1 NONLINEAR LEAST-SQUARES CURVE-FITTING PROGRAM
1979 VERSION OF THE NONLINWOOD 20 VARIABLE, 20 COEFFICIENT, 170 OBSERVATION PROGRAM
REFER TO FITTING EQUATIONS TO DATA BY DANIEL AND WOOD, SECOND EDITION, WILEY PUBLISHER,
FOR GLOSSARY OF TERMS, USER'S MANUAL, DETAILS OF CALCULATIONS AND INTERPRETATION OF RESULTS.
0CEMENT HEAT, PASS 1
0 CONTROL CARD INFORMATION ORDER OF CARDS
COL. INPUT MAX ITEM (NOTE: BLANK ON CARD = 0) FIRST PROBLEM
1-20 IDENTIFICATION OF PROBLEM. 1 CONTROL CARD.
21 0 0 OBSERVATIONS READ FROM CARDS OR FILE. 2 FORMAT CARD (72 COLUMNS, ORDER: IDENT, Y, X(I)'S),
1 REUSE DATA FROM PREVIOUS PROBLEM. E.G. (A6, F6.0, (NOIND*F6.0) ).
23-24 43 20 NUMBER OF COEFFICIENTS TO BE ESTIMATED. 3 DELETE-OBSERVATIONS CARD(S), IF ANY.
25-26 0 FILE NUMBER IF DATA ARE TO BE READ FROM A 4 STARTING VALUES (GUESSES) OF COEFFICIENTS
SEPARATE FILE. NO END CARD(S) IF ONLY ONE (10 COLUMNS / COEFFICIENT, 7 COEFFICIENTS / CARD).
SET OF DATA IS ON EACH FILE. 5 INFORMATION CARDS FOR PRINTOUT, IF ANY.
27-28 15 20 NUMBER OF INDEPENDENT VARIABLES TO BE READ IN. 6 NAMES OF COEFFICIENTS CARD(S) FOR PRINTOUT, IF ANY.
31-32 2 NUMBER OF EQUATION TO BE USED. 7 DATA CARDS (IF NOT READ FROM A FILE).
8 END CARD (END IN COLUMNS 1 - 3 OF IDENTIFICATION
33-36 0.000 STARTING VALUE FOR LAMBDA, F4.2, (E.G. 0.1), FIELD). THE NUMBER OF END CARDS MUST EQUAL THE
USED AS A MULTIPLIER TO SCALE THE SPACE OR NUMBER OF CARDS PER OBSERVATION. (END CARDS
SIZE OF STEPS TAKEN. ARE NOT NEEDED IF DATA ARE READ FROM A FILE).
37-40 0.000 VALUE OF NU, F4.0, (E.G. 10.).
DIVISOR AND MULTIPLIER TO CHANGE SIZE OF SECOND PROBLEM
LAMBDA DEPENDING ON WHETHER SUM OF SQUARES OF IF DATA ARE REUSED FROM FIRST PROBLEM,
ITERATION IS NEAR OR FAR FROM MINIMUM. DELETE THE FORMAT, DATA AND END CARDS.
43-44 0 MAXIMUM NUMBER OF ITERATIONS, I2, (E.G. 20). IF DIFFERENT DATA,
45-48 0.000 MULTIPLIER USED TO INCREMENT VALUE OF REPEAT 1 - 8 ABOVE.
COEFFICIENTS, F4.3 (E.G. 0.01).
NOTE: IF VALUES IN COLUMNS 33-48 ARE NOT DEFINED
ON THE CONTROL CARD. THEIR LEVEL WILL BE
SET AUTOMATICALLY TO THE ABOVE E.G. VALUES.
CRITERIA FOR ENDING CONVERGING ITERATIONS.
49-56 0.0E+00 SUM OF SQUARES CRITERION, F8.7,
(E.G. 0.0001, A CHANGE OF LESS THAN 0.0001 IN
THE RESIDUAL SUM OF SQUARES).
57-64 1.0E-06 RATIO OF COEFFICIENTS CRITERION, F8.7,
(E.G. 0.001, A CHANGE OF LESS THAN 0.001 IN
THE RATIOS OF ALL COMPARABLE COEFFICIENTS).
NOTE: VALUES IN COLUMNS 49-64 CAN BE SET AT 0.0
IF CONTROL OF EITHER OR BOTH IS NOT DESIRED.
65-66 8 12 NUMBER OF INFORMATION CARDS TO BE READ FOR DISPLAY
ON PRINTOUT IF DESIRED, 72 COLUMNS EACH.
68 1 1 READ NAMES OF COEFFICIENTS FROM CARDS FOR
DISPLAY ON PRINTOUT, 1ST 6 OF 10 COLUMNS /
COEFFICIENT, 7 / CARD.
69 3 3 PLOT RESIDUALS VS. EACH INDEPENDENT VARIABLE.
70 0 2 NUMBER OF DELETE-OBSERVATIONS CARDS, OBSERVATION
IDENTIFICATION IN 1ST 6 OF 10 COLUMNS, 7 / CARD.
0 SUBROUTINE ARGUMENTS AND DIMENSIONS
SUBROUTINE MODEL2 (NPROB, B, FY, NOB, NC, X, NVARX, NOBMAX, NCMAX, KTOU)
DIMENSION B(NCMAX), FY(NOBMAX), X(NVARX,NOBMAX)
Z = D - C + ( A / ( T + F )EXP B )
Z = ACID HEAT OF SOLUTION
A = CONSTANT = B(16)*X(2) + B(17)*X(3)+---+B(29)*X(15)
B = EXPONENT OR RATE OF HARDENING = B(1)
C = ULTIMATE CUMULATIVE HEAT OF HARDENING = B(30)*X(2)+---+B(43)*X(15)
D = INITIAL ACID HEAT OF SOLUTION = B( 2)*X(2)+---+B(15)*X(15)
F = TIME CORRECTION FACTOR = (A/C)EXP(1/B)
T = TIME IN DAYS = X(1)
0DATA FORMAT ( 6X, A4, 2X, 2F6.1, 6X, 14F1.0 )
OBSV. NO. IDENT. SEQ. 1-11-21 2-12-22 3-13-23 4-14-24 5-15-25 6-16-26 7-17-27 8-18-28 9-19-29 10-20-30
1 22 0 1 588.700 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
2 22 3 1 537.500 3.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 22 7 1 535.600 7.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
4 2228 1 516.200 28.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
5 2290 1 507.500 90.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
6 2218 1 510.200 180.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
7 2236 1 503.200 365.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
8 23 0 1 575.700 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
9 23 3 1 535.100 3.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
10 23 7 1 530.000 7.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
11 2328 1 514.700 28.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
12 2390 1 503.800 90.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
13 2318 1 501.400 180.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
14 2336 1 499.700 365.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
15 92 0 1 623.400 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
16 92 0 1 624.100 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
17 92 3 1 548.800 3.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
18 92 7 1 538.900 7.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
19 9228 1 531.400 28.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
20 9290 1 523.000 90.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
21 9218 1 519.300 180.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
22 9236 1 513.200 365.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
23 88 0 1 595.500 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
24 88 3 1 542.300 3.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
25 88 7 1 532.400 7.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
26 8828 1 521.800 28.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
27 8890 1 517.800 90.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
28 8818 1 507.900 180.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
29 8836 1 504.900 365.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
30 96 0 1 604.500 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
31 96 0 1 603.200 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
32 96 3 1 532.600 3.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
33 96 7 1 525.700 7.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
34 9628 1 515.700 28.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
35 9690 1 511.900 90.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
36 9618 1 508.600 180.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
37 9636 1 501.000 365.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
38 85 0 1 618.800 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
39 85 3 1 544.800 3.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
40 85 3 1 538.200 3.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
41 85 7 1 528.500 7.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
42 85 7 1 530.200 7.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
43 8528 1 517.800 28.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
44 8528 1 517.100 28.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
45 8590 1 515.100 90.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
46 8590 1 514.300 90.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
47 8518 1 509.600 180.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
48 8518 1 511.800 180.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
49 8536 1 509.000 365.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
50 8536 1 508.500 365.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
51 94 0 1 610.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
52 94 0 1 611.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
53 94 3 1 532.700 3.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
54 94 7 1 522.500 7.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
55 9428 1 517.600 28.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
56 9490 1 509.500 90.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
57 9418 1 507.300 180.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
58 9436 1 502.000 365.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
59 24 0 1 573.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
60 24 3 1 530.900 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
61 24 7 1 526.200 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
62 2428 1 511.500 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
63 2490 1 503.000 90.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
64 2418 1 500.500 180.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
65 2436 1 501.400 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
2 0.000 0.000 0.000 0.000 0.000 0.000
66 89 0 1 599.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
67 89 3 1 534.300 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
68 89 7 1 521.100 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
69 8928 1 513.200 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
70 8990 1 508.900 90.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
71 8918 1 505.900 180.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
72 8936 1 502.000 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.000 0.000 0.000 0.000 0.000
73 90 0 1 633.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
74 90 3 1 543.900 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
75 90 7 1 536.800 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
76 9028 1 524.600 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
77 9090 1 519.300 90.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
78 9018 1 517.500 180.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
79 9036 1 510.700 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 1.000 0.000 0.000 0.000 0.000
80 25 0 1 585.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
81 25 3 1 527.100 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
82 25 7 1 523.100 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
83 2528 1 511.700 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
84 2590 1 507.800 90.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
85 2518 1 502.100 180.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
86 2536 1 502.800 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.000 0.000 0.000 0.000
87 95 0 1 625.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
88 95 3 1 540.800 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
89 95 7 1 531.100 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
90 9528 1 521.900 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
91 9590 1 518.100 90.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
92 9518 1 512.300 180.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
93 9536 1 510.200 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000
94 91 0 1 624.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
95 91 3 1 540.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
96 91 7 1 532.700 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
97 9128 1 524.100 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
98 9190 1 517.800 90.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
99 9118 1 514.600 180.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
100 9136 1 507.700 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000
101 70 0 1 564.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 1.000
102 70 3 1 536.400 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 1.000
103 70 7 1 528.400 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 1.000
104 7028 1 514.900 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 1.000
105 7036 1 502.100 365.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 1.000
0
******THIS VERSION OF PROGRAM DIMENSIONED FOR 20 COEFFICIENTS, 43 REQUESTED.
0PROBLEM SKIPPED.