Trailing-Edge
-
PDP-10 Archives
-
decuslib20-02
-
decus/20-0026/dqh32.ssp
There are 2 other files named dqh32.ssp in the archive. Click here to see a list.
C DH32 10
C ..................................................................DH32 20
C DH32 30
C SUBROUTINE DQH32 DH32 40
C DH32 50
C PURPOSE DH32 60
C TO COMPUTE INTEGRAL(EXP(-X*X)*FCT(X), SUMMED OVER X FROM DH32 70
C -INFINITY TO +INFINITY). DH32 80
C DH32 90
C USAGE DH32 100
C CALL DQH32 (FCT,Y) DH32 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DH32 120
C DH32 130
C DESCRIPTION OF PARAMETERS DH32 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DH32 150
C SUBPROGRAM USED. DH32 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DH32 170
C DH32 180
C REMARKS DH32 190
C NONE DH32 200
C DH32 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DH32 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DH32 230
C MUST BE FURNISHED BY THE USER. DH32 240
C DH32 250
C METHOD DH32 260
C EVALUATION IS DONE BY MEANS OF 32-POINT GAUSSIAN-HERMITE DH32 270
C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY WHENEVER DH32 280
C FCT(X) IS A POLYNOMIAL UP TO DEGREE 63. DH32 290
C FOR REFERENCE, SEE DH32 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DH32 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DH32 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DH32 330
C TR00.1100 (MARCH 1964), PP.213-214. DH32 340
C DH32 350
C ..................................................................DH32 360
C DH32 370
SUBROUTINE DQH32(FCT,Y) DH32 380
C DH32 390
C DH32 400
DOUBLE PRECISION X,Y,Z,FCT DH32 410
C DH32 420
X=.71258139098307276D1 DH32 430
Z=-X DH32 440
Y=.7310676427384162D-22*(FCT(X)+FCT(Z)) DH32 450
X=.64094981492696604D1 DH32 460
Z=-X DH32 470
Y=Y+.9231736536518292D-18*(FCT(X)+FCT(Z)) DH32 480
X=.58122259495159138D1 DH32 490
Z=-X DH32 500
Y=Y+.11973440170928487D-14*(FCT(X)+FCT(Z)) DH32 510
X=.52755509865158801D1 DH32 520
Z=-X DH32 530
Y=Y+.42150102113264476D-12*(FCT(X)+FCT(Z)) DH32 540
X=.47771645035025964D1 DH32 550
Z=-X DH32 560
Y=Y+.59332914633966386D-10*(FCT(X)+FCT(Z)) DH32 570
X=.43055479533511984D1 DH32 580
Z=-X DH32 590
Y=Y+.40988321647708966D-8*(FCT(X)+FCT(Z)) DH32 600
X=.38537554854714446D1 DH32 610
Z=-X DH32 620
Y=Y+.15741677925455940D-6*(FCT(X)+FCT(Z)) DH32 630
X=.34171674928185707D1 DH32 640
Z=-X DH32 650
Y=Y+.36505851295623761D-5*(FCT(X)+FCT(Z)) DH32 660
X=.29924908250023742D1 DH32 670
Z=-X DH32 680
Y=Y+.54165840618199826D-4*(FCT(X)+FCT(Z)) DH32 690
X=.25772495377323175D1 DH32 700
Z=-X DH32 710
Y=Y+.53626836552797205D-3*(FCT(X)+FCT(Z)) DH32 720
X=.21694991836061122D1 DH32 730
Z=-X DH32 740
Y=Y+.36548903266544281D-2*(FCT(X)+FCT(Z)) DH32 750
X=.17676541094632016D1 DH32 760
Z=-X DH32 770
Y=Y+.17553428831573430D-1*(FCT(X)+FCT(Z)) DH32 780
X=.13703764109528718D1 DH32 790
Z=-X DH32 800
Y=Y+.60458130955912614D-1*(FCT(X)+FCT(Z)) DH32 810
X=.9765004635896828D0 DH32 820
Z=-X DH32 830
Y=Y+.15126973407664248D0*(FCT(X)+FCT(Z)) DH32 840
X=.58497876543593245D0 DH32 850
Z=-X DH32 860
Y=Y+.27745814230252990D0*(FCT(X)+FCT(Z)) DH32 870
X=.19484074156939933D0 DH32 880
Z=-X DH32 890
Y=Y+.37523835259280239D0*(FCT(X)+FCT(Z)) DH32 900
RETURN DH32 910
END DH32 920