Trailing-Edge
-
PDP-10 Archives
-
decuslib10-02
-
43,50145/srank.ssp
There are 2 other files named srank.ssp in the archive. Click here to see a list.
C SRAN 10
C ..................................................................SRAN 20
C SRAN 30
C SUBROUTINE SRANK SRAN 40
C SRAN 50
C PURPOSE SRAN 60
C TEST CORRELATION BETWEEN TWO VARIABLES BY MEANS OF SPEARMAN SRAN 70
C RANK CORRELATION COEFFICIENT SRAN 80
C SRAN 90
C USAGE SRAN 100
C CALL SRANK(A,B,R,N,RS,T,NDF,NR) SRAN 110
C SRAN 120
C DESCRIPTION OF PARAMETERS SRAN 130
C A - INPUT VECTOR OF N OBSERVATIONS FOR FIRST VARIABLE SRAN 140
C B - INPUT VECTOR OF N OBSERVATIONS FOR SECOND VARIABLE SRAN 150
C R - OUTPUT VECTOR FOR RANKED DATA, LENGTH IS 2*N. SMALLESTSRAN 160
C OBSERVATION IS RANKED 1, LARGEST IS RANKED N. TIES SRAN 170
C ARE ASSIGNED AVERAGE OF TIED RANKS. SRAN 180
C N - NUMBER OF OBSERVATIONS SRAN 190
C RS - SPEARMAN RANK CORRELATION COEFFICIENT (OUTPUT) SRAN 200
C T - TEST OF SIGNIFICANCE OF RS (OUTPUT) SRAN 210
C NDF - NUMBER OF DEGREES OF FREEDOM (OUTPUT) SRAN 220
C NR - CODE, 0 FOR UNRANKED DATA IN A AND B, 1 FOR RANKED SRAN 230
C DATA IN A AND B (INPUT) SRAN 240
C SRAN 250
C REMARKS SRAN 260
C T IS SET TO ZERO IF N IS LESS THAN TEN SRAN 270
C SRAN 280
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED SRAN 290
C RANK SRAN 300
C TIE SRAN 310
C SRAN 320
C METHOD SRAN 330
C DESCRIBED IN S. SIEGEL, 'NONPARAMETRIC STATISTICS FOR THE SRAN 340
C BEHAVIORAL SCIENCES', MCGRAW-HILL, NEW YORK, 1956, SRAN 350
C CHAPTER 9 SRAN 360
C SRAN 370
C ..................................................................SRAN 380
C SRAN 390
SUBROUTINE SRANK(A,B,R,N,RS,T,NDF,NR) SRAN 400
DIMENSION A(1),B(1),R(1) SRAN 410
C SRAN 420
FNNN=N*N*N-N SRAN 430
C SRAN 440
C DETERMINE WHETHER DATA IS RANKED SRAN 450
C SRAN 460
IF(NR-1) 5, 10, 5 SRAN 470
C SRAN 480
C RANK DATA IN A AND B VECTORS AND ASSIGN TIED OBSERVATIONS SRAN 490
C AVERAGE OF TIED RANKS SRAN 500
C SRAN 510
5 CALL RANK (A,R,N) SRAN 520
CALL RANK (B,R(N+1),N) SRAN 530
GO TO 40 SRAN 540
C SRAN 550
C MOVE RANKED DATA TO R VECTOR SRAN 560
C SRAN 570
10 DO 20 I=1,N SRAN 580
20 R(I)=A(I) SRAN 590
DO 30 I=1,N SRAN 600
J=I+N SRAN 610
30 R(J)=B(I) SRAN 620
C SRAN 630
C COMPUTE SUM OF SQUARES OF RANK DIFFERENCES SRAN 640
C SRAN 650
40 D=0.0 SRAN 660
DO 50 I=1,N SRAN 670
J=I+N SRAN 680
50 D=D+(R(I)-R(J))*(R(I)-R(J)) SRAN 690
C SRAN 700
C COMPUTE TIED SCORE INDEX SRAN 710
C SRAN 720
KT=1 SRAN 730
CALL TIE (R,N,KT,TSA) SRAN 740
CALL TIE (R(N+1),N,KT,TSB) SRAN 750
C SRAN 760
C COMPUTE SPEARMAN RANK CORRELATION COEFFICIENT SRAN 770
C SRAN 780
IF(TSA) 60,55,60 SRAN 790
55 IF(TSB) 60,57,60 SRAN 800
57 RS=1.0-6.0*D/FNNN SRAN 810
GO TO 70 SRAN 820
60 X=FNNN/12.0-TSA SRAN 830
Y=X+TSA-TSB SRAN 840
RS=(X+Y-D)/(2.0*(SQRT(X*Y))) SRAN 850
C SRAN 860
C COMPUTE T AND DEGREES OF FREEDOM IF N IS 10 OR LARGER SRAN 870
C SRAN 880
T=0.0 SRAN 890
70 IF(N-10) 80,75,75 SRAN 900
75 T=RS*SQRT(FLOAT(N-2)/(1.0-RS*RS)) SRAN 910
80 NDF=N-2 SRAN 920
RETURN SRAN 930
END SRAN 940