Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/prqd.ssp
There are 2 other files named prqd.ssp in the archive. Click here to see a list.
C PRQD 10
C ..................................................................PRQD 20
C PRQD 30
C SUBROUTINE PRQD PRQD 40
C PRQD 50
C PURPOSE PRQD 60
C CALCULATE ALL REAL AND COMPLEX ROOTS OF A GIVEN POLYNOMIAL PRQD 70
C WITH REAL COEFFICIENTS. PRQD 80
C PRQD 90
C USAGE PRQD 100
C CALL PRQD(C,IC,Q,E,POL,IR,IER) PRQD 110
C PRQD 120
C DESCRIPTION OF PARAMETERS PRQD 130
C C - COEFFICIENT VECTOR OF GIVEN POLYNOMIAL PRQD 140
C COEFFICIENTS ARE ORDERED FROM LOW TO HIGH PRQD 150
C THE GIVEN COEFFICIENT VECTOR GETS DIVIDED BY THE PRQD 160
C LAST NONZERO TERM PRQD 170
C IC - DIMENSION OF VECTOR C PRQD 180
C Q - WORKING STORAGE OF DIMENSION IC PRQD 190
C ON RETURN Q CONTAINS REAL PARTS OF ROOTS PRQD 200
C E - WORKING STORAGE OF DIMENSION IC PRQD 210
C ON RETURN E CONTAINS COMPLEX PARTS OF ROOTS PRQD 220
C POL - WORKING STORAGE OF DIMENSION IC PRQD 230
C ON RETURN POL CONTAINS THE COEFFICIENTS OF THE PRQD 240
C POLYNOMIAL WITH CALCULATED ROOTS PRQD 250
C THIS RESULTING COEFFICIENT VECTOR HAS DIMENSION IR+1PRQD 260
C COEFFICIENTS ARE ORDERED FROM LOW TO HIGH PRQD 270
C IR - NUMBER OF CALCULATED ROOTS PRQD 280
C NORMALLY IR IS EQUAL TO DIMENSION IC MINUS ONE PRQD 290
C IER - RESULTING ERROR PARAMETER. SEE REMARKS PRQD 300
C PRQD 310
C REMARKS PRQD 320
C THE REAL PART OF THE ROOTS IS STORED IN Q(1) UP TO Q(IR) PRQD 330
C CORRESPONDING COMPLEX PARTS ARE STORED IN E(1) UP TO E(IR). PRQD 340
C IER = 0 MEANS NO ERRORS PRQD 350
C IER = 1 MEANS NO CONVERGENCE WITH FEASIBLE TOLERANCE PRQD 360
C IER = 2 MEANS POLYNOMIAL IS DEGENERATE (CONSTANT OR ZERO) PRQD 370
C IER = 3 MEANS SUBROUTINE WAS ABANDONED DUE TO ZERO DIVISOR PRQD 380
C IER = 4 MEANS THERE EXISTS NO S-FRACTION PRQD 390
C IER =-1 MEANS CALCULATED COEFFICIENT VECTOR REVEALS POOR PRQD 400
C ACCURACY OF THE CALCULATED ROOTS. PRQD 410
C THE CALCULATED COEFFICIENT VECTOR HAS LESS THAN PRQD 420
C 3 CORRECT DIGITS. PRQD 430
C THE FINAL COMPARISON BETWEEN GIVEN AND CALCULATED PRQD 440
C COEFFICIENT VECTOR IS PERFORMED ONLY IF ALL ROOTS HAVE BEEN PRQD 450
C CALCULATED. PRQD 460
C THE MAXIMAL RELATIVE ERROR OF THE COEFFICIENT VECTOR IS PRQD 470
C RECORDED IN Q(IR+1). PRQD 480
C PRQD 490
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED PRQD 500
C NONE PRQD 510
C PRQD 520
C METHOD PRQD 530
C THE ROOTS OF THE POLYNOMIAL ARE CALCULATED BY MEANS OF PRQD 540
C THE QUOTIENT-DIFFERENCE ALGORITHM WITH DISPLACEMENT. PRQD 550
C REFERENCE PRQD 560
C H.RUTISHAUSER, DER QUOTIENTEN-DIFFERENZEN-ALGORITHMUS, PRQD 570
C BIRKHAEUSER, BASEL/STUTTGART, 1957. PRQD 580
C PRQD 590
C ..................................................................PRQD 600
C PRQD 610
SUBROUTINE PRQD(C,IC,Q,E,POL,IR,IER) PRQD 620
C PRQD 630
C DIMENSIONED DUMMY VARIABLES PRQD 640
DIMENSION E(1),Q(1),C(1),POL(1) PRQD 650
C PRQD 660
C NORMALIZATION OF GIVEN POLYNOMIAL PRQD 670
C TEST OF DIMENSION PRQD 680
C IR CONTAINS INDEX OF HIGHEST COEFFICIENT PRQD 690
IER=0 PRQD 700
IR=IC PRQD 710
EPS=1.E-6 PRQD 720
TOL=1.E-3 PRQD 730
LIMIT=10*IC PRQD 740
KOUNT=0 PRQD 750
1 IF(IR-1)79,79,2 PRQD 760
C PRQD 770
C DROP TRAILING ZERO COEFFICIENTS PRQD 780
2 IF(C(IR))4,3,4 PRQD 790
3 IR=IR-1 PRQD 800
GOTO 1 PRQD 810
C PRQD 820
C REARRANGEMENT OF GIVEN POLYNOMIAL PRQD 830
C EXTRACTION OF ZERO ROOTS PRQD 840
4 O=1./C(IR) PRQD 850
IEND=IR-1 PRQD 860
ISTA=1 PRQD 870
NSAV=IR+1 PRQD 880
JBEG=1 PRQD 890
C PRQD 900
C Q(J)=1. PRQD 910
C Q(J+I)=C(IR-I)/C(IR) PRQD 920
C Q(IR)=C(J)/C(IR) PRQD 930
C WHERE J IS THE INDEX OF THE LOWEST NONZERO COEFFICIENT PRQD 940
DO 9 I=1,IR PRQD 950
J=NSAV-I PRQD 960
IF(C(I))7,5,7 PRQD 970
5 GOTO(6,8),JBEG PRQD 980
6 NSAV=NSAV+1 PRQD 990
Q(ISTA)=0. PRQD1000
E(ISTA)=0. PRQD1010
ISTA=ISTA+1 PRQD1020
GOTO 9 PRQD1030
7 JBEG=2 PRQD1040
8 Q(J)=C(I)*O PRQD1050
C(I)=Q(J) PRQD1060
9 CONTINUE PRQD1070
C PRQD1080
C INITIALIZATION PRQD1090
ESAV=0. PRQD1100
Q(ISTA)=0. PRQD1110
10 NSAV=IR PRQD1120
C PRQD1130
C COMPUTATION OF DERIVATIVE PRQD1140
EXPT=IR-ISTA PRQD1150
E(ISTA)=EXPT PRQD1160
DO 11 I=ISTA,IEND PRQD1170
EXPT=EXPT-1.0 PRQD1180
POL(I+1)=EPS*ABS(Q(I+1))+EPS PRQD1190
11 E(I+1)=Q(I+1)*EXPT PRQD1200
C PRQD1210
C TEST OF REMAINING DIMENSION PRQD1220
IF(ISTA-IEND)12,20,60 PRQD1230
12 JEND=IEND-1 PRQD1240
C PRQD1250
C COMPUTATION OF S-FRACTION PRQD1260
DO 19 I=ISTA,JEND PRQD1270
IF(I-ISTA)13,16,13 PRQD1280
13 IF(ABS(E(I))-POL(I+1))14,14,16 PRQD1290
C PRQD1300
C THE GIVEN POLYNOMIAL HAS MULTIPLE ROOTS, THE COEFFICIENTS OF PRQD1310
C THE COMMON FACTOR ARE STORED FROM Q(NSAV) UP TO Q(IR) PRQD1320
14 NSAV=I PRQD1330
DO 15 K=I,JEND PRQD1340
IF(ABS(E(K))-POL(K+1))15,15,80 PRQD1350
15 CONTINUE PRQD1360
GOTO 21 PRQD1370
C PRQD1380
C EUCLIDEAN ALGORITHM PRQD1390
16 DO 19 K=I,IEND PRQD1400
E(K+1)=E(K+1)/E(I) PRQD1410
Q(K+1)=E(K+1)-Q(K+1) PRQD1420
IF(K-I)18,17,18 PRQD1430
C PRQD1440
C TEST FOR SMALL DIVISOR PRQD1450
17 IF(ABS(Q(I+1))-POL(I+1))80,80,19 PRQD1460
18 Q(K+1)=Q(K+1)/Q(I+1) PRQD1470
POL(K+1)=POL(K+1)/ABS(Q(I+1)) PRQD1480
E(K)=Q(K+1)-E(K) PRQD1490
19 CONTINUE PRQD1500
20 Q(IR)=-Q(IR) PRQD1510
C PRQD1520
C THE DISPLACEMENT EXPT IS SET TO 0 AUTOMATICALLY. PRQD1530
C E(ISTA)=0.,Q(ISTA+1),...,E(NSAV-1),Q(NSAV),E(NSAV)=0., PRQD1540
C FORM A DIAGONAL OF THE QD-ARRAY. PRQD1550
C INITIALIZATION OF BOUNDARY VALUES PRQD1560
21 E(ISTA)=0. PRQD1570
NRAN=NSAV-1 PRQD1580
22 E(NRAN+1)=0. PRQD1590
C PRQD1600
C TEST FOR LINEAR OR CONSTANT FACTOR PRQD1610
C NRAN-ISTA IS DEGREE-1 PRQD1620
IF(NRAN-ISTA)24,23,31 PRQD1630
C PRQD1640
C LINEAR FACTOR PRQD1650
23 Q(ISTA+1)=Q(ISTA+1)+EXPT PRQD1660
E(ISTA+1)=0. PRQD1670
C PRQD1680
C TEST FOR UNFACTORED COMMON DIVISOR PRQD1690
24 E(ISTA)=ESAV PRQD1700
IF(IR-NSAV)60,60,25 PRQD1710
C PRQD1720
C INITIALIZE QD-ALGORITHM FOR COMMON DIVISOR PRQD1730
25 ISTA=NSAV PRQD1740
ESAV=E(ISTA) PRQD1750
GOTO 10 PRQD1760
C PRQD1770
C COMPUTATION OF ROOT PAIR PRQD1780
26 P=P+EXPT PRQD1790
C PRQD1800
C TEST FOR REALITY PRQD1810
IF(O)27,28,28 PRQD1820
C PRQD1830
C COMPLEX ROOT PAIR PRQD1840
27 Q(NRAN)=P PRQD1850
Q(NRAN+1)=P PRQD1860
E(NRAN)=T PRQD1870
E(NRAN+1)=-T PRQD1880
GOTO 29 PRQD1890
C PRQD1900
C REAL ROOT PAIR PRQD1910
28 Q(NRAN)=P-T PRQD1920
Q(NRAN+1)=P+T PRQD1930
E(NRAN)=0. PRQD1940
C PRQD1950
C REDUCTION OF DEGREE BY 2 (DEFLATION) PRQD1960
29 NRAN=NRAN-2 PRQD1970
GOTO 22 PRQD1980
C PRQD1990
C COMPUTATION OF REAL ROOT PRQD2000
30 Q(NRAN+1)=EXPT+P PRQD2010
C PRQD2020
C REDUCTION OF DEGREE BY 1 (DEFLATION) PRQD2030
NRAN=NRAN-1 PRQD2040
GOTO 22 PRQD2050
C PRQD2060
C START QD-ITERATION PRQD2070
31 JBEG=ISTA+1 PRQD2080
JEND=NRAN-1 PRQD2090
TEPS=EPS PRQD2100
TDELT=1.E-2 PRQD2110
32 KOUNT=KOUNT+1 PRQD2120
P=Q(NRAN+1) PRQD2130
R=ABS(E(NRAN)) PRQD2140
C PRQD2150
C TEST FOR CONVERGENCE PRQD2160
IF(R-TEPS)30,30,33 PRQD2170
33 S=ABS(E(JEND)) PRQD2180
C PRQD2190
C IS THERE A REAL ROOT NEXT PRQD2200
IF(S-R)38,38,34 PRQD2210
C PRQD2220
C IS DISPLACEMENT SMALL ENOUGH PRQD2230
34 IF(R-TDELT)36,35,35 PRQD2240
35 P=0. PRQD2250
36 O=P PRQD2260
DO 37 J=JBEG,NRAN PRQD2270
Q(J)=Q(J)+E(J)-E(J-1)-O PRQD2280
C PRQD2290
C TEST FOR SMALL DIVISOR PRQD2300
IF(ABS(Q(J))-POL(J))81,81,37 PRQD2310
37 E(J)=Q(J+1)*E(J)/Q(J) PRQD2320
Q(NRAN+1)=-E(NRAN)+Q(NRAN+1)-O PRQD2330
GOTO 54 PRQD2340
C PRQD2350
C CALCULATE DISPLACEMENT FOR DOUBLE ROOTS PRQD2360
C QUADRATIC EQUATION FOR DOUBLE ROOTS PRQD2370
C X**2-(Q(NRAN)+Q(NRAN+1)+E(NRAN))*X+Q(NRAN)*Q(NRAN+1)=0 PRQD2380
38 P=0.5*(Q(NRAN)+E(NRAN)+Q(NRAN+1)) PRQD2390
O=P*P-Q(NRAN)*Q(NRAN+1) PRQD2400
T=SQRT(ABS(O)) PRQD2410
C PRQD2420
C TEST FOR CONVERGENCE PRQD2430
IF(S-TEPS)26,26,39 PRQD2440
C PRQD2450
C ARE THERE COMPLEX ROOTS PRQD2460
39 IF(O)43,40,40 PRQD2470
40 IF(P)42,41,41 PRQD2480
41 T=-T PRQD2490
42 P=P+T PRQD2500
R=S PRQD2510
GOTO 34 PRQD2520
C PRQD2530
C MODIFICATION FOR COMPLEX ROOTS PRQD2540
C IS DISPLACEMENT SMALL ENOUGH PRQD2550
43 IF(S-TDELT)44,35,35 PRQD2560
C PRQD2570
C INITIALIZATION PRQD2580
44 O=Q(JBEG)+E(JBEG)-P PRQD2590
C PRQD2600
C TEST FOR SMALL DIVISOR PRQD2610
IF(ABS(O)-POL(JBEG))81,81,45 PRQD2620
45 T=(T/O)**2 PRQD2630
U=E(JBEG)*Q(JBEG+1)/(O*(1.+T)) PRQD2640
V=O+U PRQD2650
KOUNT=KOUNT+2 PRQD2660
C PRQD2670
C THREEFOLD LOOP FOR COMPLEX DISPLACEMENT PRQD2680
DO 53 J=JBEG,NRAN PRQD2690
O=Q(J+1)+E(J+1)-U-P PRQD2700
C PRQD2710
C TEST FOR SMALL DIVISOR PRQD2720
IF(ABS(V)-POL(J))46,46,49 PRQD2730
46 IF(J-NRAN)81,47,81 PRQD2740
47 EXPT=EXPT+P PRQD2750
IF(ABS(E(JEND))-TOL)48,48,81 PRQD2760
48 P=0.5*(V+O-E(JEND)) PRQD2770
O=P*P-(V-U)*(O-U*T-O*W*(1.+T)/Q(JEND)) PRQD2780
T=SQRT(ABS(O)) PRQD2790
GOTO 26 PRQD2800
C PRQD2810
C TEST FOR SMALL DIVISOR PRQD2820
49 IF(ABS(O)-POL(J+1))46,46,50 PRQD2830
50 W=U*O/V PRQD2840
T=T*(V/O)**2 PRQD2850
Q(J)=V+W-E(J-1) PRQD2860
U=0. PRQD2870
IF(J-NRAN)51,52,52 PRQD2880
51 U=Q(J+2)*E(J+1)/(O*(1.+T)) PRQD2890
52 V=O+U-W PRQD2900
C PRQD2910
C TEST FOR SMALL DIVISOR PRQD2920
IF(ABS(Q(J))-POL(J))81,81,53 PRQD2930
53 E(J)=W*V*(1.+T)/Q(J) PRQD2940
Q(NRAN+1)=V-E(NRAN) PRQD2950
54 EXPT=EXPT+P PRQD2960
TEPS=TEPS*1.1 PRQD2970
TDELT=TDELT*1.1 PRQD2980
IF(KOUNT-LIMIT)32,55,55 PRQD2990
C PRQD3000
C NO CONVERGENCE WITH FEASIBLE TOLERANCE PRQD3010
C ERROR RETURN IN CASE OF UNSATISFACTORY CONVERGENCE PRQD3020
55 IER=1 PRQD3030
C PRQD3040
C REARRANGE CALCULATED ROOTS PRQD3050
56 IEND=NSAV-NRAN-1 PRQD3060
E(ISTA)=ESAV PRQD3070
IF(IEND)59,59,57 PRQD3080
57 DO 58 I=1,IEND PRQD3090
J=ISTA+I PRQD3100
K=NRAN+1+I PRQD3110
E(J)=E(K) PRQD3120
58 Q(J)=Q(K) PRQD3130
59 IR=ISTA+IEND PRQD3140
C PRQD3150
C NORMAL RETURN PRQD3160
60 IR=IR-1 PRQD3170
IF(IR)78,78,61 PRQD3180
C PRQD3190
C REARRANGE CALCULATED ROOTS PRQD3200
61 DO 62 I=1,IR PRQD3210
Q(I)=Q(I+1) PRQD3220
62 E(I)=E(I+1) PRQD3230
C PRQD3240
C CALCULATE COEFFICIENT VECTOR FROM ROOTS PRQD3250
POL(IR+1)=1. PRQD3260
IEND=IR-1 PRQD3270
JBEG=1 PRQD3280
DO 69 J=1,IR PRQD3290
ISTA=IR+1-J PRQD3300
O=0. PRQD3310
P=Q(ISTA) PRQD3320
T=E(ISTA) PRQD3330
IF(T)65,63,65 PRQD3340
C PRQD3350
C MULTIPLY WITH LINEAR FACTOR PRQD3360
63 DO 64 I=ISTA,IR PRQD3370
POL(I)=O-P*POL(I+1) PRQD3380
64 O=POL(I+1) PRQD3390
GOTO 69 PRQD3400
65 GOTO(66,67),JBEG PRQD3410
66 JBEG=2 PRQD3420
POL(ISTA)=0. PRQD3430
GOTO 69 PRQD3440
C PRQD3450
C MULTIPLY WITH QUADRATIC FACTOR PRQD3460
67 JBEG=1 PRQD3470
U=P*P+T*T PRQD3480
P=P+P PRQD3490
DO 68 I=ISTA,IEND PRQD3500
POL(I)=O-P*POL(I+1)+U*POL(I+2) PRQD3510
68 O=POL(I+1) PRQD3520
POL(IR)=O-P PRQD3530
69 CONTINUE PRQD3540
IF(IER)78,70,78 PRQD3550
C PRQD3560
C COMPARISON OF COEFFICIENT VECTORS, IE. TEST OF ACCURACY PRQD3570
70 P=0. PRQD3580
DO 75 I=1,IR PRQD3590
IF(C(I))72,71,72 PRQD3600
71 O=ABS(POL(I)) PRQD3610
GOTO 73 PRQD3620
72 O=ABS((POL(I)-C(I))/C(I)) PRQD3630
73 IF(P-O)74,75,75 PRQD3640
74 P=O PRQD3650
75 CONTINUE PRQD3660
IF(P-TOL)77,76,76 PRQD3670
76 IER=-1 PRQD3680
77 Q(IR+1)=P PRQD3690
E(IR+1)=0. PRQD3700
78 RETURN PRQD3710
C PRQD3720
C ERROR RETURNS PRQD3730
C ERROR RETURN FOR POLYNOMIALS OF DEGREE LESS THAN 1 PRQD3740
79 IER=2 PRQD3750
IR=0 PRQD3760
RETURN PRQD3770
C PRQD3780
C ERROR RETURN IF THERE EXISTS NO S-FRACTION PRQD3790
80 IER=4 PRQD3800
IR=ISTA PRQD3810
GOTO 60 PRQD3820
C PRQD3830
C ERROR RETURN IN CASE OF INSTABLE QD-ALGORITHM PRQD3840
81 IER=3 PRQD3850
GOTO 56 PRQD3860
END PRQD3870