Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/mfsd.ssp
There are 2 other files named mfsd.ssp in the archive. Click here to see a list.
C MFSD 10
C ..................................................................MFSD 20
C MFSD 30
C SUBROUTINE MFSD MFSD 40
C MFSD 50
C PURPOSE MFSD 60
C FACTOR A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX MFSD 70
C MFSD 80
C USAGE MFSD 90
C CALL MFSD(A,N,EPS,IER) MFSD 100
C MFSD 110
C DESCRIPTION OF PARAMETERS MFSD 120
C A - UPPER TRIANGULAR PART OF THE GIVEN SYMMETRIC MFSD 130
C POSITIVE DEFINITE N BY N COEFFICIENT MATRIX. MFSD 140
C ON RETURN A CONTAINS THE RESULTANT UPPER MFSD 150
C TRIANGULAR MATRIX. MFSD 160
C N - THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX. MFSD 170
C EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE MFSD 180
C TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE. MFSD 190
C IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS MFSD 200
C IER=0 - NO ERROR MFSD 210
C IER=-1 - NO RESULT BECAUSE OF WRONG INPUT PARAME- MFSD 220
C TER N OR BECAUSE SOME RADICAND IS NON- MFSD 230
C POSITIVE (MATRIX A IS NOT POSITIVE MFSD 240
C DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI- MFSD 250
C FICANCE) MFSD 260
C IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI- MFSD 270
C CANCE. THE RADICAND FORMED AT FACTORIZA- MFSD 280
C TION STEP K+1 WAS STILL POSITIVE BUT NO MFSD 290
C LONGER GREATER THAN ABS(EPS*A(K+1,K+1)). MFSD 300
C MFSD 310
C REMARKS MFSD 320
C THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE MFSD 330
C STORED COLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.MFSD 340
C IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU- MFSD 350
C LAR MATRIX IS STORED COLUMNWISE TOO. MFSD 360
C THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL MFSD 370
C CALCULATED RADICANDS ARE POSITIVE. MFSD 380
C THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE MFSD 390
C SQUARE-ROOT OF THE DETERMINANT OF THE GIVEN MATRIX. MFSD 400
C MFSD 410
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MFSD 420
C NONE MFSD 430
C MFSD 440
C METHOD MFSD 450
C SOLUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLESKY. MFSD 460
C THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULARMFSD 470
C MATRICES, WHERE THE LEFT HAND FACTOR IS THE TRANSPOSE OF MFSD 480
C THE RETURNED RIGHT HAND FACTOR. MFSD 490
C MFSD 500
C ..................................................................MFSD 510
C MFSD 520
SUBROUTINE MFSD(A,N,EPS,IER) MFSD 530
C MFSD 540
C MFSD 550
DIMENSION A(1) MFSD 560
DOUBLE PRECISION DPIV,DSUM MFSD 570
C MFSD 580
C TEST ON WRONG INPUT PARAMETER N MFSD 590
IF(N-1) 12,1,1 MFSD 600
1 IER=0 MFSD 610
C MFSD 620
C INITIALIZE DIAGONAL-LOOP MFSD 630
KPIV=0 MFSD 640
DO 11 K=1,N MFSD 650
KPIV=KPIV+K MFSD 660
IND=KPIV MFSD 670
LEND=K-1 MFSD 680
C MFSD 690
C CALCULATE TOLERANCE MFSD 700
TOL=ABS(EPS*A(KPIV)) MFSD 710
C MFSD 720
C START FACTORIZATION-LOOP OVER K-TH ROW MFSD 730
DO 11 I=K,N MFSD 740
DSUM=0.D0 MFSD 750
IF(LEND) 2,4,2 MFSD 760
C MFSD 770
C START INNER LOOP MFSD 780
2 DO 3 L=1,LEND MFSD 790
LANF=KPIV-L MFSD 800
LIND=IND-L MFSD 810
3 DSUM=DSUM+DBLE(A(LANF)*A(LIND)) MFSD 820
C END OF INNER LOOP MFSD 830
C MFSD 840
C TRANSFORM ELEMENT A(IND) MFSD 850
4 DSUM=DBLE(A(IND))-DSUM MFSD 860
IF(I-K) 10,5,10 MFSD 870
C MFSD 880
C TEST FOR NEGATIVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE MFSD 890
5 IF(SNGL(DSUM)-TOL) 6,6,9 MFSD 900
6 IF(DSUM) 12,12,7 MFSD 910
7 IF(IER) 8,8,9 MFSD 920
8 IER=K-1 MFSD 930
C MFSD 940
C COMPUTE PIVOT ELEMENT MFSD 950
9 DPIV=DSQRT(DSUM) MFSD 960
A(KPIV)=DPIV MFSD 970
DPIV=1.D0/DPIV MFSD 980
GO TO 11 MFSD 990
C MFSD1000
C CALCULATE TERMS IN ROW MFSD1010
10 A(IND)=DSUM*DPIV MFSD1020
11 IND=IND+I MFSD1030
C MFSD1040
C END OF DIAGONAL-LOOP MFSD1050
RETURN MFSD1060
12 IER=-1 MFSD1070
RETURN MFSD1080
END MFSD1090