Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/llsq.ssp
There are 2 other files named llsq.ssp in the archive. Click here to see a list.
C LLSQ 10
C ..................................................................LLSQ 20
C LLSQ 30
C SUBROUTINE LLSQ LLSQ 40
C LLSQ 50
C PURPOSE LLSQ 60
C TO SOLVE LINEAR LEAST SQUARES PROBLEMS, I.E. TO MINIMIZE LLSQ 70
C THE EUCLIDEAN NORM OF B-A*X, WHERE A IS A M BY N MATRIX LLSQ 80
C WITH M NOT LESS THAN N. IN THE SPECIAL CASE M=N SYSTEMS OF LLSQ 90
C LINEAR EQUATIONS MAY BE SOLVED. LLSQ 100
C LLSQ 110
C USAGE LLSQ 120
C CALL LLSQ (A,B,M,N,L,X,IPIV,EPS,IER,AUX) LLSQ 130
C LLSQ 140
C DESCRIPTION OF PARAMETERS LLSQ 150
C A - M BY N COEFFICIENT MATRIX (DESTROYED). LLSQ 160
C B - M BY L RIGHT HAND SIDE MATRIX (DESTROYED). LLSQ 170
C M - ROW NUMBER OF MATRICES A AND B. LLSQ 180
C N - COLUMN NUMBER OF MATRIX A, ROW NUMBER OF MATRIX X. LLSQ 190
C L - COLUMN NUMBER OF MATRICES B AND X. LLSQ 200
C X - N BY L SOLUTION MATRIX. LLSQ 210
C IPIV - INTEGER OUTPUT VECTOR OF DIMENSION N WHICH LLSQ 220
C CONTAINS INFORMATIONS ON COLUMN INTERCHANGES LLSQ 230
C IN MATRIX A. (SEE REMARK NO.3). LLSQ 240
C EPS - INPUT PARAMETER WHICH SPECIFIES A RELATIVE LLSQ 250
C TOLERANCE FOR DETERMINATION OF RANK OF MATRIX A. LLSQ 260
C IER - A RESULTING ERROR PARAMETER. LLSQ 270
C AUX - AUXILIARY STORAGE ARRAY OF DIMENSION MAX(2*N,L). LLSQ 280
C ON RETURN FIRST L LOCATIONS OF AUX CONTAIN THE LLSQ 290
C RESULTING LEAST SQUARES. LLSQ 300
C LLSQ 310
C REMARKS LLSQ 320
C (1) NO ACTION BESIDES ERROR MESSAGE IER=-2 IN CASE LLSQ 330
C M LESS THAN N. LLSQ 340
C (2) NO ACTION BESIDES ERROR MESSAGE IER=-1 IN CASE LLSQ 350
C OF A ZERO-MATRIX A. LLSQ 360
C (3) IF RANK K OF MATRIX A IS FOUND TO BE LESS THAN N BUT LLSQ 370
C GREATER THAN 0, THE PROCEDURE RETURNS WITH ERROR CODE LLSQ 380
C IER=K INTO CALLING PROGRAM. THE LAST N-K ELEMENTS OF LLSQ 390
C VECTOR IPIV DENOTE THE USELESS COLUMNS IN MATRIX A. LLSQ 400
C THE REMAINING USEFUL COLUMNS FORM A BASE OF MATRIX A. LLSQ 410
C (4) IF THE PROCEDURE WAS SUCCESSFUL, ERROR PARAMETER IER LLSQ 420
C IS SET TO 0. LLSQ 430
C LLSQ 440
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED LLSQ 450
C NONE LLSQ 460
C LLSQ 470
C METHOD LLSQ 480
C HOUSEHOLDER TRANSFORMATIONS ARE USED TO TRANSFORM MATRIX A LLSQ 490
C TO UPPER TRIANGULAR FORM. AFTER HAVING APPLIED THE SAME LLSQ 500
C TRANSFORMATION TO THE RIGHT HAND SIDE MATRIX B, AN LLSQ 510
C APPROXIMATE SOLUTION OF THE PROBLEM IS COMPUTED BY LLSQ 520
C BACK SUBSTITUTION. FOR REFERENCE, SEE LLSQ 530
C G. GOLUB, NUMERICAL METHODS FOR SOLVING LINEAR LEAST LLSQ 540
C SQUARES PROBLEMS, NUMERISCHE MATHEMATIK, VOL.7, LLSQ 550
C ISS.3 (1965), PP.206-216. LLSQ 560
C LLSQ 570
C ..................................................................LLSQ 580
C LLSQ 590
SUBROUTINE LLSQ(A,B,M,N,L,X,IPIV,EPS,IER,AUX) LLSQ 600
C LLSQ 610
DIMENSION A(1),B(1),X(1),IPIV(1),AUX(1) LLSQ 620
C LLSQ 630
C ERROR TEST LLSQ 640
IF(M-N)30,1,1 LLSQ 650
C LLSQ 660
C GENERATION OF INITIAL VECTOR S(K) (K=1,2,...,N) IN STORAGE LLSQ 670
C LOCATIONS AUX(K) (K=1,2,...,N) LLSQ 680
1 PIV=0. LLSQ 690
IEND=0 LLSQ 700
DO 4 K=1,N LLSQ 710
IPIV(K)=K LLSQ 720
H=0. LLSQ 730
IST=IEND+1 LLSQ 740
IEND=IEND+M LLSQ 750
DO 2 I=IST,IEND LLSQ 760
2 H=H+A(I)*A(I) LLSQ 770
AUX(K)=H LLSQ 780
IF(H-PIV)4,4,3 LLSQ 790
3 PIV=H LLSQ 800
KPIV=K LLSQ 810
4 CONTINUE LLSQ 820
C LLSQ 830
C ERROR TEST LLSQ 840
IF(PIV)31,31,5 LLSQ 850
C LLSQ 860
C DEFINE TOLERANCE FOR CHECKING RANK OF A LLSQ 870
5 SIG=SQRT(PIV) LLSQ 880
TOL=SIG*ABS(EPS) LLSQ 890
C LLSQ 900
C LLSQ 910
C DECOMPOSITION LOOP LLSQ 920
LM=L*M LLSQ 930
IST=-M LLSQ 940
DO 21 K=1,N LLSQ 950
IST=IST+M+1 LLSQ 960
IEND=IST+M-K LLSQ 970
I=KPIV-K LLSQ 980
IF(I)8,8,6 LLSQ 990
C LLSQ1000
C INTERCHANGE K-TH COLUMN OF A WITH KPIV-TH IN CASE KPIV.GT.K LLSQ1010
6 H=AUX(K) LLSQ1020
AUX(K)=AUX(KPIV) LLSQ1030
AUX(KPIV)=H LLSQ1040
ID=I*M LLSQ1050
DO 7 I=IST,IEND LLSQ1060
J=I+ID LLSQ1070
H=A(I) LLSQ1080
A(I)=A(J) LLSQ1090
7 A(J)=H LLSQ1100
C LLSQ1110
C COMPUTATION OF PARAMETER SIG LLSQ1120
8 IF(K-1)11,11,9 LLSQ1130
9 SIG=0. LLSQ1140
DO 10 I=IST,IEND LLSQ1150
10 SIG=SIG+A(I)*A(I) LLSQ1160
SIG=SQRT(SIG) LLSQ1170
C LLSQ1180
C TEST ON SINGULARITY LLSQ1190
IF(SIG-TOL)32,32,11 LLSQ1200
C LLSQ1210
C GENERATE CORRECT SIGN OF PARAMETER SIG LLSQ1220
11 H=A(IST) LLSQ1230
IF(H)12,13,13 LLSQ1240
12 SIG=-SIG LLSQ1250
C LLSQ1260
C SAVE INTERCHANGE INFORMATION LLSQ1270
13 IPIV(KPIV)=IPIV(K) LLSQ1280
IPIV(K)=KPIV LLSQ1290
C LLSQ1300
C GENERATION OF VECTOR UK IN K-TH COLUMN OF MATRIX A AND OF LLSQ1310
C PARAMETER BETA LLSQ1320
BETA=H+SIG LLSQ1330
A(IST)=BETA LLSQ1340
BETA=1./(SIG*BETA) LLSQ1350
J=N+K LLSQ1360
AUX(J)=-SIG LLSQ1370
IF(K-N)14,19,19 LLSQ1380
C LLSQ1390
C TRANSFORMATION OF MATRIX A LLSQ1400
14 PIV=0. LLSQ1410
ID=0 LLSQ1420
JST=K+1 LLSQ1430
KPIV=JST LLSQ1440
DO 18 J=JST,N LLSQ1450
ID=ID+M LLSQ1460
H=0. LLSQ1470
DO 15 I=IST,IEND LLSQ1480
II=I+ID LLSQ1490
15 H=H+A(I)*A(II) LLSQ1500
H=BETA*H LLSQ1510
DO 16 I=IST,IEND LLSQ1520
II=I+ID LLSQ1530
16 A(II)=A(II)-A(I)*H LLSQ1540
C LLSQ1550
C UPDATING OF ELEMENT S(J) STORED IN LOCATION AUX(J) LLSQ1560
II=IST+ID LLSQ1570
H=AUX(J)-A(II)*A(II) LLSQ1580
AUX(J)=H LLSQ1590
IF(H-PIV)18,18,17 LLSQ1600
17 PIV=H LLSQ1610
KPIV=J LLSQ1620
18 CONTINUE LLSQ1630
C LLSQ1640
C TRANSFORMATION OF RIGHT HAND SIDE MATRIX B LLSQ1650
19 DO 21 J=K,LM,M LLSQ1660
H=0. LLSQ1670
IEND=J+M-K LLSQ1680
II=IST LLSQ1690
DO 20 I=J,IEND LLSQ1700
H=H+A(II)*B(I) LLSQ1710
20 II=II+1 LLSQ1720
H=BETA*H LLSQ1730
II=IST LLSQ1740
DO 21 I=J,IEND LLSQ1750
B(I)=B(I)-A(II)*H LLSQ1760
21 II=II+1 LLSQ1770
C END OF DECOMPOSITION LOOP LLSQ1780
C LLSQ1790
C LLSQ1800
C BACK SUBSTITUTION AND BACK INTERCHANGE LLSQ1810
IER=0 LLSQ1820
I=N LLSQ1830
LN=L*N LLSQ1840
PIV=1./AUX(2*N) LLSQ1850
DO 22 K=N,LN,N LLSQ1860
X(K)=PIV*B(I) LLSQ1870
22 I=I+M LLSQ1880
IF(N-1)26,26,23 LLSQ1890
23 JST=(N-1)*M+N LLSQ1900
DO 25 J=2,N LLSQ1910
JST=JST-M-1 LLSQ1920
K=N+N+1-J LLSQ1930
PIV=1./AUX(K) LLSQ1940
KST=K-N LLSQ1950
ID=IPIV(KST)-KST LLSQ1960
IST=2-J LLSQ1970
DO 25 K=1,L LLSQ1980
H=B(KST) LLSQ1990
IST=IST+N LLSQ2000
IEND=IST+J-2 LLSQ2010
II=JST LLSQ2020
DO 24 I=IST,IEND LLSQ2030
II=II+M LLSQ2040
24 H=H-A(II)*X(I) LLSQ2050
I=IST-1 LLSQ2060
II=I+ID LLSQ2070
X(I)=X(II) LLSQ2080
X(II)=PIV*H LLSQ2090
25 KST=KST+M LLSQ2100
C LLSQ2110
C LLSQ2120
C COMPUTATION OF LEAST SQUARES LLSQ2130
26 IST=N+1 LLSQ2140
IEND=0 LLSQ2150
DO 29 J=1,L LLSQ2160
IEND=IEND+M LLSQ2170
H=0. LLSQ2180
IF(M-N)29,29,27 LLSQ2190
27 DO 28 I=IST,IEND LLSQ2200
28 H=H+B(I)*B(I) LLSQ2210
IST=IST+M LLSQ2220
29 AUX(J)=H LLSQ2230
RETURN LLSQ2240
C LLSQ2250
C ERROR RETURN IN CASE M LESS THAN N LLSQ2260
30 IER=-2 LLSQ2270
RETURN LLSQ2280
C LLSQ2290
C ERROR RETURN IN CASE OF ZERO-MATRIX A LLSQ2300
31 IER=-1 LLSQ2310
RETURN LLSQ2320
C LLSQ2330
C ERROR RETURN IN CASE OF RANK OF MATRIX A LESS THAN N LLSQ2340
32 IER=K-1 LLSQ2350
RETURN LLSQ2360
END LLSQ2370