Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/factr.ssp
There are 2 other files named factr.ssp in the archive. Click here to see a list.
C FCTR 10
C ..................................................................FCTR 20
C FCTR 30
C SUBROUTINE FACTR FCTR 40
C FCTR 50
C PURPOSE FCTR 60
C FACTORIZATION OF THE MATRIX A INTO A PRODUCT OF A LOWER FCTR 70
C TRIANGULAR MATRIX L AND AN UPPER TRIANGULAR MATRIX U. L HASFCTR 80
C UNIT DIAGONAL WHICH IS NOT STORED. FCTR 90
C FCTR 100
C USAGE FCTR 110
C CALL FACTR(A,PER,N,IA,IER) FCTR 120
C FCTR 130
C DESCRIPTION OF PARAMETERS FCTR 140
C A MATRIX A FCTR 150
C PER ONE DIMENSIONAL ARRAY WHERE PERMUTATIONS OF ROWS OF FCTR 160
C THE MATRIX ARE STORED FCTR 170
C DIMENSION OF PER MUST BE GREATER THAN OR EQUAL TO N FCTR 180
C N ORDER OF THE MATRIX A FCTR 190
C IA SIZE OF THE FIRST DIMENSION ASSIGNED TO THE ARRAY A FCTR 200
C IN THE CALLING PROGRAM WHEN THE MATRIX IS IN DOUBLE FCTR 210
C SUBSCRIPTED DATA STORAGE MODE. IA=N WHEN THE MATRIX FCTR 220
C IS IN SSP VECTOR STORAGE MODE. FCTR 230
C IER ERROR INDICATOR WHICH IS ZERO IF THERE IS NO ERROR, FCTR 240
C AND IS THREE IF THE PROCEDURE FAILS. FCTR 250
C FCTR 260
C REMARKS FCTR 270
C THE ORIGINAL MATRIX, A,IS REPLACED BY THE TRIANGULAR FACTORSFCTR 280
C FCTR 290
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED FCTR 300
C NONE FCTR 310
C FCTR 320
C METHOD FCTR 330
C SUCCESSIVE COMPUTATION OF THE COLUMNS OF L AND THE FCTR 340
C CORRESPONDING ROWS OF U. FCTR 350
C FCTR 360
C REFERENCES FCTR 370
C J. H. WILKINSON - THE ALGEBRAIC EIGENVALUE PROBLEM - FCTR 380
C CLARENDON PRESS, OXFORD, 1965. H. J. BOWDLER, R. S. MARTIN, FCTR 390
C G. PETERS, AND J. H. WILKINSON - 'SOLUTION OF REAL AND FCTR 400
C COMPLEX SYSTEMS OF LINEAR EQUATIONS', NUMERISCHE MATHEMATIK,FCTR 410
C VOL. 8, NO. 3, 1966, P. 217-234. FCTR 420
C FCTR 430
C ..................................................................FCTR 440
C FCTR 450
SUBROUTINE FACTR(A,PER,N,IA,IER) FCTR 460
DIMENSION A(1),PER(1) FCTR 470
DOUBLE PRECISION DP FCTR 480
C FCTR 490
C COMPUTATION OF WEIGHTS FOR EQUILIBRATION FCTR 500
C FCTR 510
DO 20 I=1,N FCTR 520
X=0. FCTR 530
IJ=I FCTR 540
DO 10 J=1,N FCTR 550
IF (ABS(A(IJ))-X)10,10,5 FCTR 560
5 X=ABS(A(IJ)) FCTR 570
10 IJ=IJ+IA FCTR 580
IF (X) 110,110,20 FCTR 590
20 PER(I)=1./X FCTR 600
I0=0 FCTR 610
DO 100 I=1,N FCTR 620
IM1=I-1 FCTR 630
IP1=I+1 FCTR 640
IPIVOT=I FCTR 650
X=0. FCTR 660
C FCTR 670
C COMPUTATION OF THE ITH COLUMN OF L FCTR 680
C FCTR 690
DO 50 K=I,N FCTR 700
KI=I0+K FCTR 710
DP=A(KI) FCTR 720
IF (I-1) 110,40,25 FCTR 730
25 KJ=K FCTR 740
DO 30 J=1,IM1 FCTR 750
IJ=I0+J FCTR 760
DP=DP-1.D0*A(KJ)*A(IJ) FCTR 770
30 KJ=KJ+IA FCTR 780
A(KI)=DP FCTR 790
C FCTR 800
C SEARCH FOR EQUILIBRATED PIVOT FCTR 810
C FCTR 820
40 IF (X-DABS(DP)*PER(K))45,50,50 FCTR 830
45 IPIVOT=K FCTR 840
X=DABS(DP)*PER(K) FCTR 850
50 CONTINUE FCTR 860
IF (X)110,110,55 FCTR 870
C FCTR 880
C PERMUTATION OF ROWS IF REQUIRED FCTR 890
C FCTR 900
55 IF (IPIVOT-I) 110,70,57 FCTR 910
57 KI=IPIVOT FCTR 920
IJ=I FCTR 930
DO 60 J=1,N FCTR 940
X=A(IJ) FCTR 950
A(IJ)=A(KI) FCTR 960
A(KI)=X FCTR 970
KI=KI+IA FCTR 980
60 IJ=IJ+IA FCTR 990
PER(IPIVOT)=PER(I) FCTR1000
70 PER(I)=IPIVOT FCTR1010
IF (I-N) 72,100,100 FCTR1020
72 IJ=I0+I FCTR1030
X=A(IJ) FCTR1040
C FCTR1050
C COMPUTATION OF THE ITH ROW OF U FCTR1060
C FCTR1070
K0=I0+IA FCTR1080
DO 90 K=IP1,N FCTR1090
KI=I0+K FCTR1100
A(KI)=A(KI)/X FCTR1110
IF (I-1)110,90,75 FCTR1120
75 IJ=I FCTR1130
KI=K0+I FCTR1140
DP=A(KI) FCTR1150
DO 80 J=1,IM1 FCTR1160
KJ=K0+J FCTR1170
DP=DP-1.D0*A(IJ)*A(KJ) FCTR1180
80 IJ=IJ+IA FCTR1190
A(KI)=DP FCTR1200
90 K0=K0+IA FCTR1210
100 I0=I0+IA FCTR1220
IER=0 FCTR1230
RETURN FCTR1240
110 IER=3 FCTR1250
RETURN FCTR1260
END FCTR1270