Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dtlep.ssp
There are 2 other files named dtlep.ssp in the archive. Click here to see a list.
C DTLE 10
C ..................................................................DTLE 20
C DTLE 30
C SUBROUTINE DTLEP DTLE 40
C DTLE 50
C PURPOSE DTLE 60
C A SERIES EXPANSION IN LEGENDRE POLYNOMIALS WITH INDEPENDENT DTLE 70
C VARIABLE X IS TRANSFORMED TO A POLYNOMIAL WITH INDEPENDENT DTLE 80
C VARIABLE Z, WHERE X=A*Z+B DTLE 90
C DTLE 100
C USAGE DTLE 110
C CALL DTLEP(A,B,POL,N,C,WORK) DTLE 120
C DTLE 130
C DESCRIPTION OF PARAMETERS DTLE 140
C A - FACTOR OF LINEAR TERM IN GIVEN LINEAR TRANSFORMATIONDTLE 150
C DOUBLE PRECISION VARIABLE DTLE 160
C B - CONSTANT TERM IN GIVEN LINEAR TRANSFORMATION DTLE 170
C DOUBLE PRECISION VARIABLE DTLE 180
C POL - COEFFICIENT VECTOR OF POLYNOMIAL (RESULTANT VALUE) DTLE 190
C COEFFICIENTS ARE ORDERED FROM LOW TO HIGH DTLE 200
C DOUBLE PRECISION VECTOR DTLE 210
C N - DIMENSION OF COEFFICIENT VECTORS POL AND C DTLE 220
C C - GIVEN COEFFICIENT VECTOR OF EXPANSION DTLE 230
C COEFFICIENTS ARE ORDERED FROM LOW TO HIGH DTLE 240
C POL AND C MAY BE IDENTICALLY LOCATED DTLE 250
C DOUBLE PRECISION VECTOR DTLE 260
C WORK - WORKING STORAGE OF DIMENSION 2*N DTLE 270
C DOUBLE PRECISION ARRAY DTLE 280
C DTLE 290
C REMARKS DTLE 300
C COEFFICIENT VECTOR C REMAINS UNCHANGED IF NOT COINCIDING DTLE 310
C WITH COEFFICIENT VECTOR POL. DTLE 320
C OPERATION IS BYPASSED IN CASE N LESS THAN 1. DTLE 330
C THE LINEAR TRANSFORMATION X=A*Z+B OR Z=(1/A)(X-B) TRANSFORMSDTLE 340
C THE RANGE (-1,+1) IN X TO THE RANGE (ZL,ZR) IN Z, WHERE DTLE 350
C ZL=-(1+B)/A AND ZR=(1-B)/A. DTLE 360
C FOR GIVEN ZL, ZR WE HAVE A=2/(ZR-ZL) AND B=-(ZR+ZL)/(ZR-ZL) DTLE 370
C DTLE 380
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DTLE 390
C NONE DTLE 400
C DTLE 410
C METHOD DTLE 420
C THE TRANSFORMATION IS BASED ON THE RECURRENCE EQUATION DTLE 430
C FOR LEGENDRE POLYNOMIALS P(N,X) DTLE 440
C P(N+1,X)=2*X*P(N,X)-P(N-1,X)-(X*P(N,X)-P(N-1,X))/(N+1), DTLE 450
C WHERE THE FIRST TERM IN BRACKETS IS THE INDEX, DTLE 460
C THE SECOND IS THE ARGUMENT. DTLE 470
C STARTING VALUES ARE P(0,X)=1, P(1,X)=X. DTLE 480
C THE TRANSFORMATION IS IMPLICITLY DEFINED BY MEANS OF DTLE 490
C X=A*Z+B TOGETHER WITH DTLE 500
C SUM(POL(I)*Z**(I-1), SUMMED OVER I FROM 1 TO N) DTLE 510
C =SUM(C(I)*P(I-1,X), SUMMED OVER I FROM 1 TO N). DTLE 520
C DTLE 530
C ..................................................................DTLE 540
C DTLE 550
SUBROUTINE DTLEP(A,B,POL,N,C,WORK) DTLE 560
C DTLE 570
DIMENSION POL(1),C(1),WORK(1) DTLE 580
DOUBLE PRECISION A,B,POL,C,WORK,H,P,Q,Q1,FI DTLE 590
C DTLE 600
C TEST OF DIMENSION DTLE 610
IF(N-1)2,1,3 DTLE 620
C DTLE 630
C DIMENSION LESS THAN 2 DTLE 640
1 POL(1)=C(1) DTLE 650
2 RETURN DTLE 660
C DTLE 670
3 POL(1)=C(1)+B*C(2) DTLE 680
POL(2)=A*C(2) DTLE 690
IF(N-2)2,2,4 DTLE 700
C DTLE 710
C INITIALIZATION DTLE 720
4 WORK(1)=1.D0 DTLE 730
WORK(2)=B DTLE 740
WORK(3)=0.D0 DTLE 750
WORK(4)=A DTLE 760
FI=1.D0 DTLE 770
C DTLE 780
C CALCULATE COEFFICIENT VECTOR OF NEXT LEGENDRE POLYNOMIAL DTLE 790
C AND ADD MULTIPLE OF THIS VECTOR TO POLYNOMIAL POL DTLE 800
DO 6 J=3,N DTLE 810
FI=FI+1.D0 DTLE 820
Q=1.D0/FI-1.D0 DTLE 830
Q1=1.D0-Q DTLE 840
P=0.D0 DTLE 850
C DTLE 860
DO 5 K=2,J DTLE 870
H=(A*P+B*WORK(2*K-2))*Q1+Q*WORK(2*K-3) DTLE 880
P=WORK(2*K-2) DTLE 890
WORK(2*K-2)=H DTLE 900
WORK(2*K-3)=P DTLE 910
5 POL(K-1)=POL(K-1)+H*C(J) DTLE 920
WORK(2*J-1)=0.D0 DTLE 930
WORK(2*J)=A*P*Q1 DTLE 940
6 POL(J)=C(J)*WORK(2*J) DTLE 950
RETURN DTLE 960
END DTLE 970