Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dqsf.doc
There are 2 other files named dqsf.doc in the archive. Click here to see a list.
SUBROUTINE DQSF
PURPOSE
TO COMPUTE THE VECTOR OF INTEGRAL VALUES FOR A GIVEN
EQUIDISTANT TABLE OF FUNCTION VALUES.
USAGE
CALL DQSF (H,Y,Z,NDIM)
DESCRIPTION OF PARAMETERS
H - DOUBLE PRECISION INCREMENT OF ARGUMENT VALUES.
Y - DOUBLE PRECISION INPUT VECTOR OF FUNCTION VALUES.
Z - RESULTING DOUBLE PRECISION VECTOR OF INTEGRAL
VALUES. Z MAY BE IDENTICAL WITH Y.
NDIM - THE DIMENSION OF VECTORS Y AND Z.
REMARKS
NO ACTION IN CASE NDIM LESS THAN 3.
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE
METHOD
BEGINNING WITH Z(1)=0, EVALUATION OF VECTOR Z IS DONE BY
MEANS OF SIMPSONS RULE TOGETHER WITH NEWTONS 3/8 RULE OR A
COMBINATION OF THESE TWO RULES. TRUNCATION ERROR IS OF
ORDER H**5 (I.E. FOURTH ORDER METHOD). ONLY IN CASE NDIM=3
TRUNCATION ERROR OF Z(2) IS OF ORDER H**4.
FOR REFERENCE, SEE
(1) F.B.HILDEBRAND, INTRODUCTION TO NUMERICAL ANALYSIS,
MCGRAW-HILL, NEW YORK/TORONTO/LONDON, 1956, PP.71-76.
(2) R.ZURMUEHL, PRAKTISCHE MATHEMATIK FUER INGENIEURE UND
PHYSIKER, SPRINGER, BERLIN/GOETTINGEN/HEIDELBERG, 1963,
PP.214-221.