Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dqa24.ssp
There are 2 other files named dqa24.ssp in the archive. Click here to see a list.
C DA24 10
C ..................................................................DA24 20
C DA24 30
C SUBROUTINE DQA24 DA24 40
C DA24 50
C PURPOSE DA24 60
C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X)/SQRT(X), SUMMED OVER X DA24 70
C FROM 0 TO INFINITY). DA24 80
C DA24 90
C USAGE DA24 100
C CALL DQA24 (FCT,Y) DA24 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DA24 120
C DA24 130
C DESCRIPTION OF PARAMETERS DA24 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DA24 150
C SUBPROGRAM USED. DA24 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DA24 170
C DA24 180
C REMARKS DA24 190
C NONE DA24 200
C DA24 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DA24 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DA24 230
C MUST BE FURNISHED BY THE USER. DA24 240
C DA24 250
C METHOD DA24 260
C EVALUATION IS DONE BY MEANS OF 24-POINT GENERALIZED GAUSS- DA24 270
C LAGUERRE QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY DA24 280
C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 47. DA24 290
C FOR REFERENCE, SEE DA24 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DA24 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DA24 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DA24 330
C TR00.1100 (MARCH 1964), PP.15-16. DA24 340
C DA24 350
C ..................................................................DA24 360
C DA24 370
SUBROUTINE DQA24(FCT,Y) DA24 380
C DA24 390
C DA24 400
DOUBLE PRECISION X,Y,FCT DA24 410
C DA24 420
X=.8055628081995041D2 DA24 430
Y=.15871102921547994D-34*FCT(X) DA24 440
X=.69068601975304369D2 DA24 450
Y=Y+.11969225386627757D-29*FCT(X) DA24 460
X=.60206666963057223D2 DA24 470
Y=Y+.7370072160301340D-26*FCT(X) DA24 480
X=.52795432527283630D2 DA24 490
Y=Y+.11129154937804570D-22*FCT(X) DA24 500
X=.46376979557540133D2 DA24 510
Y=Y+.63767746470102769D-20*FCT(X) DA24 520
X=.40711598185543107D2 DA24 530
Y=Y+.17460319202373353D-17*FCT(X) DA24 540
X=.35653703516328212D2 DA24 550
Y=Y+.26303192453168170D-15*FCT(X) DA24 560
X=.31106464709046565D2 DA24 570
Y=Y+.23951797309583587D-13*FCT(X) DA24 580
X=.27001406056472356D2 DA24 590
Y=Y+.14093865163091778D-11*FCT(X) DA24 600
X=.23287932824879917D2 DA24 610
Y=Y+.56305930756763382D-10*FCT(X) DA24 620
X=.19927425875242462D2 DA24 630
Y=Y+.15860934990330765D-8*FCT(X) DA24 640
X=.16889671928527108D2 DA24 650
Y=Y+.32450282717915397D-7*FCT(X) DA24 660
X=.14150586187285759D2 DA24 670
Y=Y+.49373179873395010D-6*FCT(X) DA24 680
X=.11690695926056073D2 DA24 690
Y=Y+.56945173834696962D-5*FCT(X) DA24 700
X=.9494095330026488D1 DA24 710
Y=Y+.50571980554969778D-4*FCT(X) DA24 720
X=.7547704680023454D1 DA24 730
Y=Y+.35030086360234566D-3*FCT(X) DA24 740
X=.58407332713236080D1 DA24 750
Y=Y+.19127846396388306D-2*FCT(X) DA24 760
X=.43642830769353062D1 DA24 770
Y=Y+.8306009823955105D-2*FCT(X) DA24 780
X=.31110524551477130D1 DA24 790
Y=Y+.28889923149962199D-1*FCT(X) DA24 800
X=.20751129098523806D1 DA24 810
Y=Y+.8095935396920770D-1*FCT(X) DA24 820
X=.12517406323627464D1 DA24 830
Y=Y+.18364459415857036D0*FCT(X) DA24 840
X=.63729027873266879D0 DA24 850
Y=Y+.33840894389128221D0*FCT(X) DA24 860
X=.22910231649262433D0 DA24 870
Y=Y+.50792308532951820D0*FCT(X) DA24 880
X=.25437996585689359D-1 DA24 890
Y=Y+.62200206075592616D0*FCT(X) DA24 900
RETURN DA24 910
END DA24 920