Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/apmm.ssp
There are 2 other files named apmm.ssp in the archive. Click here to see a list.
C APMM 10
C ..................................................................APMM 20
C APMM 30
C SUBROUTINE APMM APMM 40
C APMM 50
C PURPOSE APMM 60
C APPROXIMATE A FUNCTION TABULATED IN N POINTS BY ANY LINEAR APMM 70
C COMBINATION OF M GIVEN CONTINUOUS FUNCTIONS IN THE SENSE APMM 80
C OF CHEBYSHEV. APMM 90
C APMM 100
C USAGE APMM 110
C CALL APMM(FCT,N,M,TOP,IHE,PIV,T,ITER,IER) APMM 120
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT IN THE APMM 130
C CALLING PROGRAM. APMM 140
C APMM 150
C DESCRIPTION OF PARAMETERS APMM 160
C FCT - NAME OF SUBROUTINE TO BE SUPPLIED BY THE USER. APMM 170
C IT COMPUTES VALUES OF M GIVEN FUNCTIONS FOR APMM 180
C ARGUMENT VALUE X. APMM 190
C USAGE APMM 200
C CALL FCT(Y,X,K) APMM 210
C DESCRIPTION OF PARAMETERS APMM 220
C Y - RESULT VECTOR OF DIMENSION M CONTAINING APMM 230
C THE VALUES OF GIVEN CONTINUOUS FUNCTIONS APMM 240
C FOR GIVEN ARGUMENT X APMM 250
C X - ARGUMENT VALUE APMM 260
C K - AN INTEGER VALUE WHICH IS EQUAL TO M-1 APMM 270
C REMARKS APMM 280
C IF APPROXIMATION BY NORMAL CHEBYSHEV, SHIFTED APMM 290
C CHEBYSHEV, LEGENDRE, LAGUERRE, HERMITE POLYNO- APMM 300
C MIALS IS DESIRED SUBROUTINES CNP, CSP, LEP, APMM 310
C LAP, HEP, RESPECTIVELY FROM SSP COULD BE USED. APMM 320
C N - NUMBER OF DATA POINTS DEFINING THE FUNCTION WHICH APMM 330
C IS TO BE APPROXIMATED APMM 340
C M - NUMBER OF GIVEN CONTINUOUS FUNCTIONS FROM WHICH APMM 350
C THE APPROXIMATING FUNCTION IS CONSTRUCTED. APMM 360
C TOP - VECTOR OF DIMENSION 3*N. APMM 370
C ON ENTRY IT MUST CONTAIN FROM TOP(1) UP TO TOP(N) APMM 380
C THE GIVEN N FUNCTION VALUES AND FROM TOP(N+1) UP APMM 390
C TO TOP(2*N) THE CORRESPONDING NODES APMM 400
C ON RETURN TOP CONTAINS FROM TOP(1) UP TO TOP(N) APMM 410
C THE ERRORS AT THOSE N NODES. APMM 420
C OTHER VALUES OF TOP ARE SCRATCH. APMM 430
C IHE - INTEGER VECTOR OF DIMENSION 3*M+4*N+6 APMM 440
C PIV - VECTOR OF DIMENSION 3*M+6. APMM 450
C ON RETURN PIV CONTAINS AT PIV(1) UP TO PIV(M) THE APMM 460
C RESULTING COEFFICIENTS OF LINEAR APPROXIMATION. APMM 470
C T - AUXILIARY VECTOR OF DIMENSION (M+2)*(M+2) APMM 480
C ITER - RESULTANT INTEGER WHICH SPECIFIES THE NUMBER OF APMM 490
C ITERATIONS NEEDED APMM 500
C IER - RESULTANT ERROR PARAMETER CODED IN THE FOLLOWING APMM 510
C FORM APMM 520
C IER=0 - NO ERROR APMM 530
C IER=1 - THE NUMBER OF ITERATIONS HAS REACHED APMM 540
C THE INTERNAL MAXIMUM N+M APMM 550
C IER=-1 - NO RESULT BECAUSE OF WRONG INPUT PARA- APMM 560
C METER M OR N OR SINCE AT SOME ITERATION APMM 570
C NO SUITABLE PIVOT COULD BE FOUND APMM 580
C APMM 590
C REMARKS APMM 600
C NO ACTION BESIDES ERROR MESSAGE IN CASE M LESS THAN 1 OR APMM 610
C N LESS THAN 2. APMM 620
C APMM 630
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED APMM 640
C THE EXTERNAL SUBROUTINE FCT MUST BE FURNISHED BY THE USER. APMM 650
C APMM 660
C METHOD APMM 670
C THE PROBLEM OF APPROXIMATION A TABULATED FUNCTION BY ANY APMM 680
C LINEAR COMBINATION OF GIVEN FUNCTIONS IN THE SENSE OF APMM 690
C CHEBYSHEV (I.E. TO MINIMIZE THE MAXIMUM ERROR) IS TRANS- APMM 700
C FORMED INTO A LINEAR PROGRAMMING PROBLEM. APMM USES A APMM 710
C REVISED SIMPLEX METHOD TO SOLVE A CORRESPONDING DUAL APMM 720
C PROBLEM. FOR REFERENCE, SEE APMM 730
C I.BARRODALE/A.YOUNG, ALGORITHMS FOR BEST L-SUB-ONE AND APMM 740
C L-SUB-INFINITY, LINEAR APPROXIMATIONS ON A DISCRETE SET, APMM 750
C NUMERISCHE MATHEMATIK, VOL.8, ISS.3 (1966), PP.295-306. APMM 760
C APMM 770
C ..................................................................APMM 780
C APMM 790
SUBROUTINE APMM(FCT,N,M,TOP,IHE,PIV,T,ITER,IER) APMM 800
C APMM 810
C APMM 820
DIMENSION TOP(1),IHE(1),PIV(1),T(1) APMM 830
DOUBLE PRECISION DSUM APMM 840
C APMM 850
C TEST ON WRONG INPUT PARAMETERS N AND M APMM 860
IER=-1 APMM 870
IF (N-1) 81,81,1 APMM 880
1 IF(M) 81,81,2 APMM 890
C APMM 900
C INITIALIZE CHARACTERISTIC VECTORS FOR THE TABLEAU APMM 910
2 IER=0 APMM 920
C APMM 930
C PREPARE TOP-ROW TOP APMM 940
DO 3 I=1,N APMM 950
K=I+N APMM 960
J=K+N APMM 970
TOP(J)=TOP(K) APMM 980
3 TOP(K)=-TOP(I) APMM 990
C APMM1000
C PREPARE INVERSE TRANSFORMATION MATRIX T APMM1010
L=M+2 APMM1020
LL=L*L APMM1030
DO 4 I=1,LL APMM1040
4 T(I)=0. APMM1050
K=1 APMM1060
J=L+1 APMM1070
DO 5 I=1,L APMM1080
T(K)=1. APMM1090
5 K=K+J APMM1100
C APMM1110
C PREPARE INDEX-VECTOR IHE APMM1120
DO 6 I=1,L APMM1130
K=I+L APMM1140
J=K+L APMM1150
IHE(I)=0 APMM1160
IHE(K)=I APMM1170
6 IHE(J)=1-I APMM1180
NAN=N+N APMM1190
K=L+L+L APMM1200
J=K+NAN APMM1210
DO 7 I=1,NAN APMM1220
K=K+1 APMM1230
IHE(K)=I APMM1240
J=J+1 APMM1250
7 IHE(J)=I APMM1260
C APMM1270
C SET COUNTER ITER FOR ITERATION-STEPS APMM1280
ITER=-1 APMM1290
8 ITER=ITER+1 APMM1300
C APMM1310
C TEST FOR MAXIMUM ITERATION-STEPS APMM1320
IF(N+M-ITER) 9,9,10 APMM1330
9 IER=1 APMM1340
GO TO 69 APMM1350
C APMM1360
C DETERMINE THE COLUMN WITH THE MOST POSITIVE ELEMENT IN TOP APMM1370
10 ISE=0 APMM1380
IPIV=0 APMM1390
K=L+L+L APMM1400
SAVE=0. APMM1410
C APMM1420
C START TOP-LOOP APMM1430
DO 14 I=1,NAN APMM1440
IDO=K+I APMM1450
HELP=TOP(I) APMM1460
IF(HELP-SAVE) 12,12,11 APMM1470
11 SAVE=HELP APMM1480
IPIV=I APMM1490
12 IF(IHE(IDO)) 14,13,14 APMM1500
13 ISE=I APMM1510
14 CONTINUE APMM1520
C END OF TOP-LOOP APMM1530
C APMM1540
C IS OPTIMAL TABLEAU REACHED APMM1550
IF(IPIV) 69,69,15 APMM1560
C APMM1570
C DETERMINE THE PIVOT-ELEMENT FOR THE COLUMN CHOSEN UPOVE APMM1580
15 ILAB=1 APMM1590
IND=0 APMM1600
J=ISE APMM1610
IF(J) 21,21,34 APMM1620
C APMM1630
C TRANSFER K-TH COLUMN FROM T TO PIV APMM1640
16 K=(K-1)*L APMM1650
DO 17 I=1,L APMM1660
J=L+I APMM1670
K=K+1 APMM1680
17 PIV(J)=T(K) APMM1690
C APMM1700
C IS ANOTHER COLUMN NEEDED FOR SEARCH FOR PIVOT-ELEMENT APMM1710
18 IF(ISE) 22,22,19 APMM1720
19 ISE=-ISE APMM1730
C APMM1740
C TRANSFER COLUMNS IN PIV APMM1750
J=L+1 APMM1760
IDO=L+L APMM1770
DO 20 I=J,IDO APMM1780
K=I+L APMM1790
20 PIV(K)=PIV(I) APMM1800
21 J=IPIV APMM1810
GO TO 34 APMM1820
C APMM1830
C SEARCH PIVOT-ELEMENT PIV(IND) APMM1840
22 SAVE=1.E38 APMM1850
IDO=0 APMM1860
K=L+1 APMM1870
LL=L+L APMM1880
IND=0 APMM1890
C APMM1900
C START PIVOT-LOOP APMM1910
DO 29 I=K,LL APMM1920
J=I+L APMM1930
HELP=PIV(I) APMM1940
IF(HELP) 29,29,23 APMM1950
23 HELP=-HELP APMM1960
IF(ISE) 26,24,26 APMM1970
24 IF(IHE(J)) 27,25,27 APMM1980
25 IDO=I APMM1990
GO TO 29 APMM2000
26 HELP=-PIV(J)/HELP APMM2010
27 IF(HELP-SAVE) 28,29,29 APMM2020
28 SAVE=HELP APMM2030
IND=I APMM2040
29 CONTINUE APMM2050
C END OF PIVOT-LOOP APMM2060
C APMM2070
C TEST FOR SUITABLE PIVOT-ELEMENT APMM2080
IF(IND) 30,30,32 APMM2090
30 IF(IDO) 68,68,31 APMM2100
31 IND=IDO APMM2110
C PIVOT-ELEMENT IS STORED IN PIV(IND) APMM2120
C APMM2130
C COMPUTE THE RECIPROCAL OF THE PIVOT-ELEMENT REPI APMM2140
32 REPI=1./PIV(IND) APMM2150
IND=IND-L APMM2160
C APMM2170
C UPDATE THE TOP-ROW TOP OF THE TABLEAU APMM2180
ILAB=0 APMM2190
SAVE=-TOP(IPIV)*REPI APMM2200
TOP(IPIV)=SAVE APMM2210
C APMM2220
C INITIALIZE J AS COUNTER FOR TOP-LOOP APMM2230
J=NAN APMM2240
33 IF(J-IPIV) 34,53,34 APMM2250
34 K=0 APMM2260
C APMM2270
C SEARCH COLUMN IN TRANSFORMATION-MATRIX T APMM2280
DO 36 I=1,L APMM2290
IF(IHE(I)-J) 36,35,36 APMM2300
35 K=I APMM2310
IF(ILAB) 50,50,16 APMM2320
36 CONTINUE APMM2330
C APMM2340
C GENERATE COLUMN USING SUBROUTINE FCT AND TRANSFORMATION-MATRIX APMM2350
I=L+L+L+NAN+J APMM2360
I=IHE(I)-N APMM2370
IF(I) 37,37,38 APMM2380
37 I=I+N APMM2390
K=1 APMM2400
38 I=I+NAN APMM2410
C APMM2420
C CALL SUBROUTINE FCT APMM2430
CALL FCT(PIV,TOP(I),M-1) APMM2440
C APMM2450
C PREPARE THE CALLED VECTOR PIV APMM2460
DSUM=0.D0 APMM2470
IDO=M APMM2480
DO 41 I=1,M APMM2490
HELP=PIV(IDO) APMM2500
IF(K) 39,39,40 APMM2510
39 HELP=-HELP APMM2520
40 DSUM=DSUM+DBLE(HELP) APMM2530
PIV(IDO+1)=HELP APMM2540
41 IDO=IDO-1 APMM2550
PIV(L)=-DSUM APMM2560
PIV(1)=1. APMM2570
C APMM2580
C TRANSFORM VECTOR PIV WITH ROWS OF MATRIX T APMM2590
IDO=IND APMM2600
IF(ILAB) 44,44,42 APMM2610
42 K=1 APMM2620
43 IDO=K APMM2630
44 DSUM=0.D0 APMM2640
HELP=0. APMM2650
C APMM2660
C START MULTIPLICATION-LOOP APMM2670
DO 46 I=1,L APMM2680
DSUM=DSUM+DBLE(PIV(I)*T(IDO)) APMM2690
TOL=ABS(SNGL(DSUM)) APMM2700
IF(TOL-HELP) 46,46,45 APMM2710
45 HELP=TOL APMM2720
46 IDO=IDO+L APMM2730
C END OF MULTIPLICATION-LOOP APMM2740
C APMM2750
TOL=1.E-5*HELP APMM2760
IF(ABS(SNGL(DSUM))-TOL) 47,47,48 APMM2770
47 DSUM=0.D0 APMM2780
48 IF(ILAB) 51,51,49 APMM2790
49 I=K+L APMM2800
PIV(I)=DSUM APMM2810
C APMM2820
C TEST FOR LAST COLUMN-TERM APMM2830
K=K+1 APMM2840
IF(K-L) 43,43,18 APMM2850
50 I=(K-1)*L+IND APMM2860
DSUM=T(I) APMM2870
C APMM2880
C COMPUTE NEW TOP-ELEMENT APMM2890
51 DSUM=DSUM*DBLE(SAVE) APMM2900
TOL=1.E-5*ABS(SNGL(DSUM)) APMM2910
TOP(J)=TOP(J)+SNGL(DSUM) APMM2920
IF(ABS(TOP(J))-TOL) 52,52,53 APMM2930
52 TOP(J)=0. APMM2940
C APMM2950
C TEST FOR LAST TOP-TERM APMM2960
53 J=J-1 APMM2970
IF(J) 54,54,33 APMM2980
C END OF TOP-LOOP APMM2990
C APMM3000
C TRANSFORM PIVOT-COLUMN APMM3010
54 I=IND+L APMM3020
PIV(I)=-1. APMM3030
DO 55 I=1,L APMM3040
J=I+L APMM3050
55 PIV(I)=-PIV(J)*REPI APMM3060
C APMM3070
C UPDATE TRANSFORMATION-MATRIX T APMM3080
J=0 APMM3090
DO 57 I=1,L APMM3100
IDO=J+IND APMM3110
SAVE=T(IDO) APMM3120
T(IDO)=0. APMM3130
DO 56 K=1,L APMM3140
ISE=K+J APMM3150
56 T(ISE)=T(ISE)+SAVE*PIV(K) APMM3160
57 J=J+L APMM3170
C APMM3180
C UPDATE INDEX-VECTOR IHE APMM3190
C INITIALIZE CHARACTERISTICS APMM3200
J=0 APMM3210
K=0 APMM3220
ISE=0 APMM3230
IDO=0 APMM3240
C APMM3250
C START QUESTION-LOOP APMM3260
DO 61 I=1,L APMM3270
LL=I+L APMM3280
ILAB=IHE(LL) APMM3290
IF(IHE(I)-IPIV) 59,58,59 APMM3300
58 ISE=I APMM3310
J=ILAB APMM3320
59 IF(ILAB-IND) 61,60,61 APMM3330
60 IDO=I APMM3340
K=IHE(I) APMM3350
61 CONTINUE APMM3360
C END OF QUESTION-LOOP APMM3370
C APMM3380
C START MODIFICATION APMM3390
IF(K) 62,62,63 APMM3400
62 IHE(IDO)=IPIV APMM3410
IF(ISE) 67,67,65 APMM3420
63 IF(IND-J) 64,66,64 APMM3430
64 LL=L+L+L+NAN APMM3440
K=K+LL APMM3450
I=IPIV+LL APMM3460
ILAB=IHE(K) APMM3470
IHE(K)=IHE(I) APMM3480
IHE(I)=ILAB APMM3490
IF(ISE) 67,67,65 APMM3500
65 IDO=IDO+L APMM3510
I=ISE+L APMM3520
IHE(IDO)=J APMM3530
IHE(I)=IND APMM3540
66 IHE(ISE)=0 APMM3550
67 LL=L+L APMM3560
J=LL+IND APMM3570
I=LL+L+IPIV APMM3580
ILAB=IHE(I) APMM3590
IHE(I)=IHE(J) APMM3600
IHE(J)=ILAB APMM3610
C END OF MODIFICATION APMM3620
C APMM3630
GO TO 8 APMM3640
C APMM3650
C SET ERROR PARAMETER IER=-1 SINCE NO SUITABLE PIVOT IS FOUND APMM3660
68 IER=-1 APMM3670
C APMM3680
C EVALUATE FINAL TABLEAU APMM3690
C COMPUTE SAVE AS MAXIMUM ERROR OF APPROXIMATION AND APMM3700
C HELP AS ADDITIVE CONSTANCE FOR RESULTING COEFFICIENTS APMM3710
69 SAVE=0. APMM3720
HELP=0. APMM3730
K=L+L+L APMM3740
DO 73 I=1,NAN APMM3750
IDO=K+I APMM3760
J=IHE(IDO) APMM3770
IF(J) 71,70,73 APMM3780
70 SAVE=-TOP(I) APMM3790
71 IF(M+J+1) 73,72,73 APMM3800
72 HELP=TOP(I) APMM3810
73 CONTINUE APMM3820
C APMM3830
C PREPARE T,TOP,PIV APMM3840
T(1)=SAVE APMM3850
IDO=NAN+1 APMM3860
J=NAN+N APMM3870
DO 74 I=IDO,J APMM3880
74 TOP(I)=SAVE APMM3890
DO 75 I=1,M APMM3900
75 PIV(I)=HELP APMM3910
C APMM3920
C COMPUTE COEFFICIENTS OF RESULTING POLYNOMIAL IN PIV(1) UP TO PIAPMM3930
C AND CALCULATE ERRORS AT GIVEN NODES IN TOP(1) UP TO TOP(N) APMM3940
DO 79 I=1,NAN APMM3950
IDO=K+I APMM3960
J=IHE(IDO) APMM3970
IF(J) 76,79,77 APMM3980
76 J=-J APMM3990
PIV(J)=HELP-TOP(I) APMM4000
GO TO 79 APMM4010
77 IF(J-N) 78,78,79 APMM4020
78 J=J+NAN APMM4030
TOP(J)=SAVE+TOP(I) APMM4040
79 CONTINUE APMM4050
DO 80 I=1,N APMM4060
IDO=NAN+I APMM4070
80 TOP(I)=TOP(IDO) APMM4080
81 RETURN APMM4090
END APMM4100